Modeling oyster populations. 3. Critical feeding periods, growth and reproduction

dc.acquisition-srcDownloaded from-Aquatic Sciences and Fisheries Abstractsen_US
dc.call-noen_US
dc.contract-noen_US
dc.contributor.authorHofmann EEen_US
dc.contributor.authorPowell ENen_US
dc.contributor.authorKlinck JMen_US
dc.contributor.authorWilson EAen_US
dc.contributor.otherJournal of Shellfish Researchen_US
dc.date.accessioned2010-02-15T17:14:19Z
dc.date.available2010-02-15T17:14:19Z
dc.date.issued1992en_US
dc.degreeen_US
dc.description399-416en_US
dc.description-otheren_US
dc.description.abstractA time-dependent population dynamics model for oyster (Crassostrea virginica) populations is used to test the hypothesis that variations in the seasonal sequence in temperature and food supply are responsible for observed variations in oyster reproductive effort. Simulations show that a few degrees change in temperature or a small shift in timing of the spring or fall bloom can considerably alter the duration of spawning and the seasonal spawning patterns. Furthermore, the timing of the spring and fall plankton blooms relative to the spring increase and fall decrease in temperature is crucial in determining reproductive effort over a spawning season. Delay of the spring bloom with respect to the spring temperature rise increases reproductive effort and affects the number and timing of spawning pulses. Simulations using environmental conditions appropriate for Laguna Madre, Galveston Bay and Chesapeake Bay show that reproductive effort decreases with increasing latitude and that the timing of increases in food supply relative to rising temperature becomes more important. Other environmental factors such as low salinity events and turbidity have a lesser effect on population growth and reproduction than do changes in temperature and food supply. The model results suggest that oyster reproductive patterns at higher latitudes (e.g. Chesapeake Bay) are characterized by discrete spawning pulses; continuous spawning becomes more frequent at lower latitudes. The results of this modeling study suggest that the characteristically-wide range of oyster reproductive efforts recorded in the literature may result from seemingly minor changes in the environmenten_US
dc.description.urihttp://gbic.tamug.edu/request.htmen_US
dc.historyen_US
dc.identifier.urihttp://hdl.handle.net/1969.3/23060
dc.latitudeen_US
dc.locationen_US
dc.longitudeen_US
dc.notes0730-8000EnglishEnglishJournal ArticleMarineFA9301960en_US
dc.placeen_US
dc.publisheren_US
dc.relation.ispartofseries50609.00en_US
dc.relation.urien_US
dc.scaleen_US
dc.seriesen_US
dc.subjectCrassostreaen_US
dc.subjectCrassostrea virginicaen_US
dc.subjectDOen_US
dc.subjectenvironmental conditionsen_US
dc.subjectenvironmental factorsen_US
dc.subjectfeedingen_US
dc.subjectfood availabilityen_US
dc.subjectGalveston Bayen_US
dc.subjectgrowthen_US
dc.subjectmathematical modelsen_US
dc.subjectO 5020 Fisheries and Fishery Biologyen_US
dc.subjectPlanktonen_US
dc.subjectpopulation dynamicsen_US
dc.subjectPopulation growthen_US
dc.subjectPopulationsen_US
dc.subjectQ1 01442 Population dynamicsen_US
dc.subjectQ3 01583 Shellfish cultureen_US
dc.subjectReproductionen_US
dc.subjectSalinityen_US
dc.subjectsimulationen_US
dc.subjectspawningen_US
dc.subjectspringen_US
dc.subjectTemperatureen_US
dc.subjectTemperature effectsen_US
dc.subjectTimingen_US
dc.subjectTurbidityen_US
dc.subjectUSAen_US
dc.titleModeling oyster populations. 3. Critical feeding periods, growth and reproductionen_US
dc.typeJournalen_US
dc.universityen_US
dc.vol-issue11(2)en_US

Files