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Abstract
Vibrissae are important components of the mammalian tactile sensory system and are used

to detect vibrotactile stimuli in the environment. Pinnipeds have the largest and most highly

innervated vibrissae among mammals, and the hair shafts function as a biomechanical filter

spanning the environmental stimuli and the neural mechanoreceptors deep in the follicle-

sinus complex. Therefore, the material properties of these structures are critical in transfer-

ring vibrotactile information to the peripheral nervous system. Vibrissae were tested as can-

tilever beams and their flexural stiffness (EI) was measured to test the hypotheses that the

shape of beaded vibrissae reduces EI and that vibrissae are anisotropic. EI was measured

at two locations on each vibrissa, 25% and 50% of the overall length, and at two orientations

to the point force. EI differed in orientations that were normal to each other, indicating a func-

tional anisotropy. Since vibrissae taper from base to tip, the second moment of area (I) was
lower at 50% than 25% of total length. The anterior orientation exhibited greater EI values at
both locations compared to the dorsal orientation for all species. Smooth vibrissae were

generally stiffer than beaded vibrissae. The profiles of beaded vibrissae are known to

decrease the amplitude of vibrations when protruded into a flow field. The lower EI values of
beaded vibrissae, along with the reduced vibrations, may function to enhance the sensitivity

of mechanoreceptors to detection of small changes in flow from swimming prey by increas-

ing the signal to noise ratio. This study builds upon previous morphological and hydrody-

namic analyses of vibrissae and is the first comparative study of the mechanical properties

of pinniped vibrissae.

Introduction
Many organisms have developed mechanosensory structures to detect physical cues in their
environment. Often, these structures are small, hair-like and abundant. For example, some
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freshwater insects use such structures to detect benthic flow patterns in streams [1,2] and
marine copepods use hair-like structures called setae to detect small hydrodynamic signals at
depth and near the sea surface [3–7]. The smallest filiform hairs found on insects and crusta-
ceans are some of the most discriminatory sensory organs in the animal kingdom, operating
on a microscopic level to detect water particle displacement [8]. Among aquatic vertebrates,
the lateral line system of fishes is among the best studied mechanosensory systems [9–13]. The
lateral line system allows an individual to receive information regarding the flow regime
around its body that may originate from conspecifics (for schooling), predators, prey or itself,
as well as other biological and abiotic cues (i.e., currents) in its environment [10,14,15]. The lat-
eral line contains neuromast organs that transduce fluid forces to mechanoreceptors, hair cells
[10,16,17]. Differences in the morphology of head and trunk canals of the lateral line have been
correlated with differences in ecological factors such as habitat, swimming style and schooling
behavior [12].

Vibrissae (whiskers) are modified hairs of mammals that are used as sensory organs. Vibris-
sae are comprised of a blood filled follicle-sinus complex (F-SC) that is heavily innervated by
cranial nerve V, which courses through the F-SC to terminate on a variety of mechanorecep-
tors. The mystacial vibrissae, found on both sides of the muzzle, are the largest group. Among
mammals, vibrissae are largest in pinnipeds [18,19] and as in other mammals, their mystacial
vibrissae are arranged in an array of columns and rows. The vibrissae can be protruded into the
water flow around their body, which allows them to navigate their aquatic environment and
even track biogenic hydrodynamic trails in the water using this sense alone [20–26] and
reviewed by [27]. Traditionally, the hair shafts of pinniped vibrissae have been classified as
smooth or beaded, with a repeating sequence of crests and troughs to give a sinusoidal profile
along the length [27–30]. Most species have a solid but elliptical cross-section [31]. The sinu-
soidal wavelength is on the order of millimeters and the greater and smaller diameters of the
cross-section are out of phase by approximately 180 degrees. All phocid (true or earless) seals,
with the exceptions of monk (Monachus spp.) and bearded (Erignathus barbatus) seals, show
this distinct beaded profile [28–30, 32–36]. The vibrissae of ringed (Pusa hispida) and harbor
(Phoca vitulina) seals have been observed to vibrate during swimming due to vortex shedding
[21,33], and this is likely true for all phocid whiskers. The beaded morphology of phocid seal
vibrissae decreases these vibrations during swimming compared to smooth vibrissae [30,37]
but see [31]. This reduction in vibration likely increases the signal to noise ratio of vibrotactile
stimuli and enhances the detection capability of mechanoreceptors in the underlying hair folli-
cles [30,37,38]. When actively hunting, seals protract their vibrissae, which then vibrate at a
certain frequency based on their mechanical properties [21]. Only recently has the morphology
of the hair shaft, particularly the impact of the beaded morphology on water flow [30,31,37]
and the diversity of morphologies among phocids [29,32] been investigated.

It is clear that pinnipeds’ vibrissal hair shafts are modulating environmental signals via
changes in the cross-sectional shape and morphology of the beaded sinusoidal profile. These
properties modify how information is transferred to the mechanoreceptors deep in the F-SC.
Therefore, the material properties of vibrissal hair shafts are likely crucial to the transmission
of information. Changes in mechanical properties likely interact with the diversity of hair shaft
morphology to affect flexural stiffness and modulate the amplitude and frequency of vibrotac-
tile cues that arrive at the F-SC mechanoreceptors. In this way, the hair shafts of pinniped whis-
kers, and likely all mammals, function as a biomechanical filter [39]. Such ideas are not new.
Dykes [18] postulated that the increased response of seal vibrissae to high frequency stimuli
was related to hair shaft mechanical properties. However, the mechanical properties of vibrissal
hair shafts (hereafter called vibrissae) are currently unexplored.
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In this study, pinniped vibrissae were tested as simplified cantilever beams projecting from
the muzzles of seals and engineering beam theory was used to investigate mechanical differ-
ences among a variety of pinnipeds. In beam theory, when a cantilevered beam is bent down-
ward, the top half of a beam is placed in tension while the lower half of the beam is placed in
compression [40]. A neutral plane running longitudinally through the center of the beam
experiences no tensile or compressive stresses [40,41] during bending. A beam’s resistance to
bending depends upon both the material of which it is made and the arrangement of that mate-
rial around the neutral plane. Vibrissae exhibit specific orientation with an ellipsoidal cross-
section, and are curved and tapered along their length. Calculation of bending forces, such as
those generated when vibrissae are subjected to water flow, requires knowledge of both the
mechanical properties and the geometric arrangement of the material, also known as the sec-
ond moment of area (I). The measure of a material’s elasticity is referred to as Young’s modulus
(E). Flexural stiffness is the product of Young’s modulus and the second moment of area (EI)
[41–43]. Young’s modulus is a material property and is therefore assumed to remain constant
over the length of a structure [41]. However, I depends upon the cross-sectional area of the
structure and this geometry can vary over the length of the beam and be modified by the organ-
ism’s developmental plan. In strict terms, measures of E are only valid if structures are homoge-
neous, isotropic, linearly elastic (Hookean), deform equally under both tensile and compressive
forces, and deform less than 10% when loaded [40,41]. Obviously many biological materials
violate some of these assumptions, but a good estimate of EI can be calculated if both the
Young’s modulus and the second moment of area can be measured [44,45]. Due to the depth
of knowledge regarding the function of pinniped vibrissae in terms of the neurobiology, F-SC
microanatomy, hair shaft morphology, computational fluid dynamics, and numerous behav-
ioral studies, the vibrissae of pinnipeds provide an interesting model system in which to inves-
tigate the influence of material properties on sensory function. We predict that, as found in
vibrissal hair shaft morphologies [29,31,32], there will be a diversity of flexural stiffness values
among pinniped species that likely influences their function. The first obvious morphological
difference among pinniped vibrissae is whether they are beaded or smooth. It has been postu-
lated that the beaded profile possessed by most phocids increases the stiffness of the “sensory
lever” of these vibrissae [46]. However, an alternative hypothesis is that beaded morphology
decreases vibrissal hair shaft stiffness relative to smooth whiskers since the distribution of the
material away from the neutral axis will vary and on average be closer to the neutral axis than
smooth vibrissae (if the greatest diameters between smooth and beaded whiskers are kept con-
stant). Therefore, the objective of this study was to measure flexural stiffness (EI) for vibrissae
from numerous pinniped species to test the hypothesis that traditionally beaded vibrissae
exhibit a lower EI compared to smooth vibrissae. In addition, since most pinniped whiskers
have an elliptical cross-section and are curved along their length, we tested the hypothesis that
flexural stiffness was anisotropic in vibrissae, depending upon orientation.

Materials and Methods

Ethics Statement
Whole mystacial vibrissal pads were collected from dead animals by stranding networks in
New Jersey, New England and California and from legal, indigenous hunts in Alaska, and sin-
gle vibrissae were collected opportunistically when shed by captive animals. IACUC approval
was not required since only dead animals or naturally shed vibrissae were utilized. All samples
were collected under a National Marine Fisheries Service (NMFS) Southeast Regional Office
salvage permit letter to CDM and NMFS permits #358–1585 and 358–1787 issued to the
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Alaska Department of Fish and Game. The sample collection procedure was reviewed as part
of obtaining the salvage permit letter.

Test Samples
Mystacial vibrissae from 11 pinniped species and 43 individuals were tested (Table 1). Seven of
the pinnipeds were from the family Phocidae and the remaining four species were from the
Otariidae. Beaded vibrissae were present in the phocids, with the exception of bearded seals
(Erignathus barbatus). Bearded seals and all of the otariids possessed smooth vibrissae. Since
there may be variation within individual pinnipeds depending on the size of the vibrissa and its
location on the muzzle, the longest vibrissae, which tended to be found in the lower rows and
posterior columns, were chosen from the same location on the vibrissal array across species to
standardize comparisons. Although the exact location of shed vibrissae could not be known,
the shed vibrissae were consistent with the largest mystacial whiskers from other pinnipeds,
where their exact location is known, and their material properties were in line with vibrissae
collected in these controlled methods. Morphological analyses using vibrissae from many of
the same individuals tested in the present study showed no significant differences in vibrissal
length or area among age classes or between genders [32]. Vibrissae were removed from the
muzzle by cutting them off at the skin surface, external to the follicle. Mechanical properties of
the vibrissae were tested using a MTS Insight 5 SL uniaxial load frame (MTS Systems Corpora-
tion, Eden Prairie, MN, USA). A 25N load cell (MTS Systems Corporation, Eden Prairie, MN,
USA) was equipped with a circular horizontal pin (shown above the vibrissa in Fig 1C) that
could roll slightly to create a near frictionless contact during point force loading.

Testing Procedure and Equations
Samples of vibrissae were secured at the base in plastic molds filled with epoxy to keep the base
stationary during testing (Fig 1). Vibrissae were pushed into the epoxy so that the base was
flush with the bottom of the mold during potting. A customized apparatus was fitted into the
lower grip of the MTS to hold each vibrissa horizontally. A percentage of the length of vibrissae
was used to standardize the testing location among all species. The distance along the vibrissa
from the epoxy mold to the point force load was used as the length of the beam (L; Eqs 1 and
2). A point force was applied at 25% and 50% of the total length of the vibrissa base. This length

Table 1. Material testing vibrissae samples.

Vibrissal Profile Family Species Number of Individuals

Beaded Phocidae Gray seal (Halichoerus grypus Fabricius, 1791) 5

Phocidae Harbor seal (Phoca vitulina Linnaeus, 1758) 5

Phocidae Harp seal (Pagophilus groenlandicus Erxleben, 1777) 5

Phocidae Ringed seal (Pusa hispida Schreber, 1775) 5

Phocidae Spotted seal (Phoca largha Pallas, 1811) 5

Phocidae Weddell seal (Leptonychotes weddellii Lesson, 1826) 3

Smooth Phocidae Bearded seal (Erignathus barbatus Erxleben, 1777) 5

Otariidae California sea lion (Zalophus californianus Lesson, 1828) 5

Otariidae Guadalupe fur seal (Arctocephalus townsendi Merriam, 1897) 1

Otariidae Northern fur seal (Callorhinus ursinus Linnaeus, 1758) 2

Otariidae South American fur seal (Arctocephalus australis Zimmermann, 1783) 2

The number of individuals is given, classified by vibrissal profile, family and species.

doi:10.1371/journal.pone.0127941.t001
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was calculated by:

L ¼ ðLo � HepoxÞ � 0:25; ð1Þ

and

L ¼ ðLo � HepoxÞ � 0:50; ð2Þ

where L is the length of the vibrissa (mm), Lo is the overall vibrissa length (mm), and Hepox is
the height of the epoxy base (mm).

The applied force and deflection were recorded using the MTS data acquisition software
and E was calculated from the linear (elastic) portion of the load-extension curve where the
material is Hookean, i.e., extension is proportional to force [47]. The slope of the linear portion
of the graph was calculated by the equation for a line:

Y ¼ mx þ b; ð3Þ

where Y is the applied force (F) and x is deflection (δ). The y-intercept (b) is zero since the
curve starts at the origin.

EI is calculated by [48]:

EI ¼ FL3

3d
; ð4Þ

where F is the applied force, L is the effective beam length, or distance from the point of attach-
ment to the point force, and δ is the deflection (the change in length divided by the original
length). Through simple algebraic substitution and transposition of elements from Eqs 3 and 4,
E can be calculated as:

E ¼ m � L3

3I
; ð5Þ

where E is the elastic modulus,m is the slope of the linear portion of the force-extension curve,
and I is the second moment of area of the vibrissae.

We approximated the shape of the vibrissae as a cylinder. The actual shape of pinniped
vibrissae is conical [49], but its taper is very small at the locations we tested. Therefore, the
error due to assuming it to be cylindrical will also be negligible. The shape and beaded structure
influence the value of I, and consequently influence flexural stiffness.

Fig 1. Photographs of vibrissae prepared for testing. A) a California sea lion vibrissa potted in epoxy
mold, B) a harp seal vibrissa potted in epoxy mold, and C) the MTS Insight apparatus testing set up with a
Weddell seal vibrissa potted in epoxy mold and held horizontally for cantilever bending. The major axis of
each vibrisse is facing the reader and the minor axis is perpendicular to the page.

doi:10.1371/journal.pone.0127941.g001
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Vibrissae were bent in the anterior-posterior orientation, then rotated and bent in the dor-
sal-ventral orientation. The major and minor axes (w and h) of the ellipsoidal cross section of
each vibrissa were measured with digital calipers (Mitutoyo Corporation, Kawasaki, Japan).
Flexural stiffness measurements were collected at 25% and 50% of the length of each vibrissa
from the base. The equation of I for an ellipse with radii w and h was used [40,41]:

I ¼ pwh3

4
; ð6Þ

Ianterior ¼
ðpw3hÞ

4
; ð7Þ

Idorsal ¼
ðpwh3Þ

4
; ð8Þ

where w is the radius of the major axis and h is the radius of the minor axis.
The equations above were used to calculate EI in both the dorsal and anterior orientations

of bending.

Mechanical Testing Criteria
The test conditions were optimized using several criteria during data collection and analysis.
The slip of the sample during the initial phase of the test was determined from the raw load-
extension data and thus the beginning of the test was determined. This slippage can occur due
to improper gripping of the plastic molds or minor tolerance in the thread of the vertical screw.
This can easily be detected. In these experiments, the grips were not specified by the test stan-
dards so they were designed to suit to the test configurations. However, these slippages were
negligible. The test was determined to have begun when the load value and the extension value
were positive and linearly proportional. To determine the effect of the crosshead speed (rate of
application of load) on EI, beaded vibrissae and smooth vibrissae were tested at nine different
test speeds ranging from 0.5mm/min to 5mm/sec. One-Way ANOVA determined that the
speed of the crosshead did not affect the material properties of either beaded or smooth vibris-
sae (P = 1.00). These results are in agreement with a previous study on the compressive modu-
lus of keratinous horse hooves, which compared speeds from 10–100 mm/min and found no
significant effect [50]. Based on the lack of difference among speeds observed in this study, a
testing speed of 10mm/min was used throughout the rest of the trials. This speed was interme-
diate among those tested and decreased the time necessary for each trial.

One vibrissa from each of five species with beaded hairshafts and two species with smooth
hairshafts were tested in the four major orientations: anterior, posterior, dorsal and ventral.
Morphologically, as a seal swims through water, flow crosses the long cross-sectional axis of
each vibrissa (Fig 2), that is, the major axis (w). Accordingly, this orientation was denoted as
the anterior orientation, and the orientation 180 degrees from the anterior orientation was
denoted as the posterior orientation to create an anterior-posterior orientation (A-P). The con-
vex side of each vibrissa was designated as the dorsal orientation and the concave side (180
degrees from the dorsal surface) was denoted as the ventral orientation,for both phocids and
otariids. This dorsal-ventral (D-V) orientation corresponds to the minor axis (h) of the vibris-
sal cross-section (Fig 2). These orientations were confirmed by the inspection of whole muzzles
containing the entire mystacial array of vibrissae for numerous species, as well as in live ani-
mals (personal observation, CDM). Another subset of vibrissae was used to test the hypothesis
that EI was invariant regardless of whether vibrissae were wet or dry. This was important to

Flexural Stiffness of Pinniped Vibrissae

PLOS ONE | DOI:10.1371/journal.pone.0127941 July 1, 2015 6 / 15



translate the laboratory work to vibrissal function in live animals. Vibrissae were tested (in
both the anterior-posterior and dorsoventral orientations) after being stored dry and then were
placed in distilled water for 20 min. Excess water was wiped off with a paper towel and the
vibrissae were immediately tested again in both orientations. In all testing scenarios, five conse-
cutive trials were run in each orientation with the load completely removed from the vibrissa
for one minute between trials.

Statistical Analysis
Variation in EImeasurements among species and between orientations was presented as
means ± one standard deviation (s.d.) and assessed using ANOVA with species or orientation
as the independent variable and EI as the dependent variable, followed by Tukey HSD post-hoc
tests in JMP software (v. 8.0.1, SAS Institute, Inc., Cary, NC, USA). Fur seals (Arctocephalus
australis, Arctocephalus townsendi, Callorhinus ursinus) were pooled as one group for statistical
analysis due to the low number of individuals per species. All data were log transformed to
obtain normality before statistical testing. Results were determined to be statistically significant
at P<0.05.

Results
Flexural stiffness values for samples tested in the anterior and posterior orientations were not
significantly different from each other, nor were the values for samples tested in the dorsal and
ventral orientations (Fig 3). However, both anterior and posterior orientations of vibrissae sig-
nificantly differed in EI (P = 0.001; Fig 2) from samples tested in the dorsal and ventral orienta-
tions. This makes sense given that the A-P orientation corresponds to the major axis of each
vibrissae and the D-V orientation corresponds to the minor axis of each vibrissa. Since EI dif-
fered in only two orientations (A-P vs. D-V), only the anterior and dorsal orientations were
tested within and among species. Prior testing demonstrated that EI values of dry versus wet
trials did not significantly differ from one another. Values of all species and individuals demon-
strated that EI values of vibrissae were anisotropic. Vibrissal EI values in the A-P orientation
were 1.5 to 2.9 times greater than the D-V orientation (P<0.001) at the 25% testing length and
1.4 to 3.4 times greater than the D-V orientation (P<0.001) at the 50% testing length (Table 2).

Comparatively, EI varied among species. In the A-P orientation, mean EI ranged from 81.2
N/mm2 (for a ringed seal) to 590.1 N/mm2 (for a fur seal) at the 25% testing length, and from
71.7 N/mm2 (for a ringed seal) to 559.7 N/mm2 (for a fur seal) at the 50% testing length
(Table 2). In the D-V orientation, mean EI values ranged from 34.4 N/mm2 (for a gray seal) to

Fig 2. Diagram of vibrissal orientation in water flow and testing orientations.

doi:10.1371/journal.pone.0127941.g002
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390.8 N/mm2 (for a fur seal) at 25% testing length, and from 27.9 N/mm2 for a gray seal to
319.4 N/mm2 for a fur seal at 50% testing length (Table 2).

At the 25% testing length, ringed seals had the lowest EI values in both the A-P and D-V ori-
entations, and significantly differed from all species except gray seals (P<0.001). Fur seals had
the highest EI values and significantly differed from all other species (P = 0.018; Fig 4A). The
greatest difference between the A-P and D-V orientations was observed in gray seals and the
smallest difference was observed in Weddell seals (Fig 4A). The five trials within each species
in each orientation were not significantly different from each other.

At the 50% testing length, gray seals had the lowest EI values in the D-V orientation and
ringed seals had the lowest EI values in the A-P orientation. Ringed seals were significantly dif-
ferent from all species except gray seals (P<0.001; Fig 4B). Fur seals had the highest EI values
and significantly differed from all other species (P<0.001; Fig 4B). Once again, the greatest dif-
ference between the A-P and D-V orientations was observed in gray seals and the smallest

Fig 3. Results of materials testing in four orientations. A subset of pinniped vibrissae was tested in all
four orientations. D = Dorsal, A = Anterior, V = Ventral, P = Posterior. Dorsal and ventral did not differ from
each other but had significantly lower mean flexural stiffness values than anterior and posterior, which also
did not differ from each other. Different letters indicate significant differences between orientations.

doi:10.1371/journal.pone.0127941.g003

Table 2. Results of EImeasurements at two locations on the vibrissae.

Vibrissal Profile Species 25% EI (N/mm2) 50% EI (N/mm2)

A (Major) D (Minor) A (Major) D (Minor)

Beaded

Gray 98.7 ± 32.36 34.4 ± 8.78 95.8 ± 27.01 27.9 ± 6.31

Harbor 136.5 ± 38.38 68.5 ± 25.88 120.8 ± 35.65 49.9 ± 24.11

Harp 152.7 ± 48.05 87.1 ± 44.22 118.4 ± 36.84 53.6 ± 29.22

Ringed 81.2 ± 44.72 40.1 ± 17.89 71.7 ± 42.37 30.8 ± 13.97

Spotted 159.1 ± 99.42 91.8 ± 59.51 143.7 ± 100.04 72.6 ± 47.47

Weddell 287.6 ± 23.10 216.5 ± 10.73 248.9 ± 26.44 180.1 ± 34.94

Smooth

Bearded 434 ± 154.96 164 ± 79.41 371 ± 154.55 146.5 ± 66.31

CA Sea Lion 278.8 ± 73.52 171.5 ± 83.70 264.7 ± 113.79 134.3 ± 88.11

Fur Seals 590.1 ± 301.05 390.8 ± 229.42 559.7 ± 326.52 319.4 ± 231.53

Mean ± s.d. for EI is given for each species of pinniped analyzed in this study. A = anterior orientation and D = dorsal orientation.

doi:10.1371/journal.pone.0127941.t002
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difference was observed in Weddell seals (Fig 4B). The five trials within each species in each
orientation were not significantly different from each other.

At the 25% testing length, bearded seals had the lowest E values in both the D-V and A-P
orientations. Harp seals had the highest E value in the D-V orientation and CA sea lions had
the highest E value in the A-P orientation (Table 3). Bearded seals also had the lowest E values
in both orientations at the 50% testing length. Fur seals had the highest E values in both orien-
tations at the 50% testing length (Table 3).

Ringed seals had the smallest diameter and I value in both the major and minor axes at 25%
and 50% of the total vibrissae length. Bearded seals had the largest diameter and I value in the
major axis and fur seals had the largest diameter and I value in the minor axis at 25% of the
total vibrissa length (Table 4). Bearded seals had the largest diameter and I values in the major
axis and were equal to Weddell seals’ diameter in the minor axis at 50% of the total vibrissa

Fig 4. Results of EImeasurements. A) 25% of the length and B) 50% of the length. Mean ± s.e.m. values
are given for six species of pinnipeds with beaded vibrissae and three species with smooth vibrissae.
D = Dorsal orientation and A = Anterior orientation. Species with different letters were significantly different.

doi:10.1371/journal.pone.0127941.g004

Table 3. Values of Young’s Modulus (E).

Species 25% 50%

D-V (Minor) A-P (Major) D-V (Minor) A-P (Major)

Gray 8.15 ± 2.47 5.92 ± 1.76 16.47 ± 3.20 8.71 ± 2.12

Harbor 11.96 ± 1.69 7.53 ± 2.38 22.87 ± 6.99 12.07 ± 1.89

Harp 15.84 ± 4.21 7.62 ± 2.86 25.27 ± 5.29 11.69 ± 4.85

Ringed 12.06 ± 3.14 7.88 ± 2.82 26.53 ± 6.51 16.97 ± 8.49

Spotted 11.94 ± 1.72 5.97 ± 0.96 18.22 ± 5.46 7.26 ± 1.41

Weddell 8.97 ± 2.65 7.02 ± 1.05 16.37 ± 6.39 11.56 ± 2.31

Bearded 6.96 ± 1.81 4.85 ± 0.98 8.63 ± 2.62 5.98 ± 0.94

CA Sea Lion 12.23 ± 1.52 14.10 ± 5.87 20.77 ± 4.96 15.99 ± 1.96

Fur Seals 11.90 ± 4.06 8.94 ± 2.85 29.05 ± 10.22 23.28 ± 7.86

Mean E values (GPa) ± standard deviation are presented by species, testing location and orientation.

doi:10.1371/journal.pone.0127941.t003

Flexural Stiffness of Pinniped Vibrissae

PLOS ONE | DOI:10.1371/journal.pone.0127941 July 1, 2015 9 / 15



length. Bearded seals also had the highest I values in the minor axis at 50% of the total vibrissa
length (Table 4).

Discussion
Hydrodynamic reception of vibrotactile stimuli left by pinniped prey is a complex process that
is mediated by the structure of the F-SC, the type, number and placement of mechanoreceptors
and their innervation, the length and taper of the vibrissal hair shafts, and the morphology and
material properties of those hair shafts. In this study, we showed that flexural stiffness of pinni-
ped whiskers is anisotropic. Vibrissae were stiffer in the anterior-posterior orientation than the
dorsal-ventral orientation. Our values of Young’s modulus reported in this study were compa-
rable to those of rat vibrissae, which ranged from 3–7.36 GPa [51,52]. Young’s modulus of
harp seal vibrissae was previously measured at 1.8–3.3 GPa [53].

It is clear that the cross-sectional geometry of pinniped vibrissae is of high importance since
the differences in I (rather than E) between the two orientations resulted in different EI values.
In the A-P orientation, vibrissae are wider than they are tall, so more material is located further
away from the neutral axis, resulting in greater flexural stiffness, as expected [40,41]. This ori-
entation makes sense functionally, because the major axis of the vibrissal cross-sectional ellipse
is in-line with water flow past the individual [27,30]. EI in both orientations were similar at
both 25% and 50% of vibrissal length in all species, and all species demonstrated higher EI val-
ues at 25% of the length than at 50% of the length, as expected. Vibrissae were stiffer at the base
and became more flexible further from the base. However, the relative difference of EI is of
interest as it may impact foraging tactics. Because hydrodynamic trail-following relies on
vibrotactile stimuli being transmitted to the mechanoreceptors by the hair shaft, the testing
location near the base of the vibrissae (i.e., 25% of total length) was likely more indicative of
the mechanical function that allows these tracking behaviors. Studies on other biological mate-
rials have had difficulty obtaining data near the tip of the structure due to slippage [44]. Trials
at 75% of the length of the vibrissae were abandoned in the present study for similar reasons.
The mechanical properties of the tips of these structures may best be estimated using alterna-
tive methods such as Finite Element Modeling. A study of flexural stiffness in pigeon feathers
demonstrated a similar trend, in which maximum values of I occurred at or near the insertion

Table 4. Values of I and diameter.

Species 25% 50%

Diameter A-P
(Major)

Diameter D-V
(Minor)

I A-P (Major) I D-V (Minor) Diameter A-P
(Major)

Diameter D-V
(Minor)

I A-P (Major) I D-V (Minor)

Gray 0.91 ± 0.12 0.46 ± 0.04 0.018 ± 0.008 0.004 ± 0.001 0.88 ± 0.14 0.34 ± 0.03 0.012 ± 0.006 0.002 ± 0.001

Harbor 0.91 ± 0.07 0.50 ± 0.11 0.018 ± 0.003 0.006 ± 0.003 0.81 ± 0.07 0.38 ± 0.09 0.010 ± 0.004 0.002 ± 0.002

Harp 0.96 ± 0.11 0.48 ± 0.06 0.022 ± 0.010 0.006 ± 0.003 0.85 ± 0.11 0.36 ± 0.05 0.011 ± 0.004 0.002 ± 0.001

Ringed 0.78 ± 0.21 0.44 ± 0.08 0.012 ± 0.010 0.003 ± 0.002 0.64 ± 0.17 0.33 ± 0.07 0.005 ± 0.004 0.001 ± 0.001

Spotted 0.97 ± 0.24 0.51 ± 0.12 0.028 ± 0.023 0.008 ± 0.006 0.93 ± 0.28 0.42 ± 0.10 0.022 ± 0.017 0.004 ± 0.004

Weddell 1.02 ± 0.03 0.80 ± 0.08 0.042 ± 0.008 0.026 ± 0.008 0.88 ± 0.04 0.65 ± 0.11 0.022 ± 0.006 0.013 ± 0.006

Bearded 1.37 ± 0.16 0.69 ± 0.10 0.093 ± 0.045 0.024 ± 0.012 1.24 ± 0.20 0.65 ± 0.10 0.068 ± 0.045 0.018 ± 0.011

CA Sea
Lion

0.97 ± 0.16 0.65 ± 0.12 0.032 ± 0.020 0.015 ± 0.009 0.86 ± 0.14 0.51 ± 0.09 0.018 ± 0.010 0.006 ± 0.004

Fur Seals 1.15 ± 0.14 0.82 ± 0.18 0.068 ± 0.044 0.037 ± 0.034 0.91 ± 0.12 0.61 ± 0.13 0.025 ± 0.014 0.012 ± 0.009

Mean ± SD I and diameter values are presented for each species in the major and minor axes and at 25% and 50% testing lengths.

doi:10.1371/journal.pone.0127941.t004
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of the feather into the skin (between 0 and 20% of feather length) and then decreased along the
length of the feather [54,55].

We hypothesized that a beaded profile of most phocid vibrissae would alter I in such a way
as to reduce EI compared to the smooth profile of most otariid vibrissae. Our rationale behind
this hypothesis was that the sinusoidal wavy appearance of beaded vibrissae should, on average,
decrease the distance between the neutral axis of the beam and the majority of material relative
to smooth vibrissae. The prediction that EI is lower in beaded hair shafts was supported by the
results of this study. In general, otariid vibrissae were stiffer than phocid vibrissae, with the
exception of Weddell seals. Because bearded seal vibrissae are also smooth, their greater flex-
ural stiffness was consistent with the smooth vibrissae of otariids. In addition, bearded seals
may have displayed higher EI values because their vibrissae are used in active touch behavior
while foraging on benthos [56–58], rather than hydrodynamic trail following of fish, which is a
divergent behavior from other species in this study. However, the flexural stiffness of beaded
Weddell seal vibrissae was similar to smooth California sea lion vibrissae. Although it was
reported that cross-sectional shape of pinniped vibrissae is elliptical [30,31], our data demon-
strated that this property varied across species and impacted EI values. For example, Weddell
seals in this study displayed a nearly circular cross-section, which minimized differences in
flexural stiffness between the A-P and D-V orientations. Such a simple variable has functional
consequences in prey detection during hydrodynamic trail following.

The fact that otariid vibrissae were stiffer than the beaded vibrissae of phocids may not
seem intuitive at first because harbor seals (the best studied species in terms of sensory capabil-
ities) also possess stiff whiskers. The finding that phocid vibrissae have lower EI values than
otariid vibrissae was unexpected but currently the detailed mechanism of stimuli transmission
is unknown. For information to be transmitted to the mechanoreceptors in the F-SC, the
vibrissal hair shafts must be stiff enough to be able to be protruded and maintained in the
water flow as the individual follows a hydrodynamic trail. However, the vibrissae must be flexi-
ble enough to allow information from vortex trails in the flow to be transmitted along the hair
shaft to the follicle. It is possible that if the hair shaft is too stiff, the transmission of small vibro-
tactile cues may not be conveyed as effectively to the mechanoreceptors. Vibrissae not only
function to transmit vibrotactile cues from the environment to the mechanoreceptors of the
F-SC, but also amplify those signals. In laboratory rats (Rattus rattus), the natural resonance
frequencies of vibrissae amplify tactile cues and modulate how vibrotactile cues are conveyed
to the central nervous system [52,59,60]. Rat vibrissal hair shafts exhibited a resonance when
brushed past an object in its environment. This resonance was dependent upon the morphol-
ogy (length and width) of the vibrissae. Cross-sectional length and width of vibrissae (i.e.,
major and minor axes) are the main factors in calculating the second moment of area and flex-
ural stiffness. Flexural stiffness of vibrissae will affect the natural resonances of each hair shaft
and should be considered as a proxy for vibrissal natural resonances. In rats, the vibrissal array
represents a resonance analyzer, with shorter vibrissae tuned to different resonances than lon-
ger vibrissae, which is analogous to the hair cells of cochlea in mammalian ears [52,59,60]. In
addition, rats can change these biomechanical properties possibly by increased muscle tension
or changes in blood flow (and pressure) to the F-SC [52,61,62]. We suggest that pinniped
vibrissal hair shafts function similarly, but in the case of beaded phocid vibrissae, there is an
interplay among natural resonance frequencies, sinusoidal morphology and hydrodynamic
effects resulting from the sinusoidal morphology that further modulate environmental vibro-
tactile cues compared to otariids. Evidence supporting this hypothesis is provided by perfor-
mance data from both harbor seals and California sea lions. Harbor seals have a higher success
rate in tracking hydrodynamic trails than California sea lions [20–23]. The higher EI values
observed in smooth vibrissae may make these structures less able to detect small deflections
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from changes in flow created by a swimming prey item. Additionally, the size of vibrissae varies
on the muzzle, from about 1.5 cm to 10 cm long in phocids [29]. This range in size may result
in a range of tuned frequencies accessible to the animal, which may vary among species. Addi-
tional mechanical testing on vibrissae of various sizes would help elucidate this possibility.

The pronounced differences in EI between the A-P and D-V orientations likely have sensory
consequences. As the animal swims forward, the vibrissae vibrate at a frequency related to their
swimming speed [33]. The vibrations are induced from the alternating generation of vortices
that are shed from the vibrissal surface into the wake [30,38]. However, the angle of the vibrissa
to the water flow also affects the vibration frequency [33]. The functional consequence of
higher EI in the A-P orientation may also imply that the mechanoreceptors in the underlying
follicle are more sensitive to flow changes in front of the animal, as opposed to above the ani-
mal, or may result in concomitant change in mechanoreceptor distribution and type around
the hair shaft in the F-SC. Because many pinnipeds track prey in the water column, the A-P
orientation of the vibrissae may be the most important in detecting and tracking hydrodynamic
trails.

This is the first comparative study on the mechanical properties of pinniped mystacial
vibrissae. Additional comparative research on the material properties of vibrissal hairshafts is
needed to further elucidate pinniped vibrissal function. Other vibrissal fields in pinnipeds such
as the rhinal and superciliary vibrissal fields were outside the scope of this study, but warrant
further investigation. Our results indicate that flexural stiffness varies among species. Vibrissae
exhibited higher EI values in the anterior-posterior orientation than the dorsal-ventral orienta-
tion, which was related to cross-sectional shape (ellipses) as measured by the major and minor
axes that changed values of I while E remained constant. We suggest that the variation in flex-
ural stiffness in pinniped vibrissae results in variation in resonance frequencies of hair shafts
that interact with the beaded morphology to provide a greater resolution of hydrodynamic
reception in phocid seals with beaded vibrissae. Recent research on pinniped vibrissae has
focused on the differences in shape among some phocids, which demonstrate a sinusoidal
beaded profile, and other phocids, otariids and odobenids, which have a smooth vibrissal pro-
file [29,32]. The results of this study suggest that the mechanical properties of vibrissae may be
just as important as the morphological profile in vibrissal function.
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