Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston Bay waters


2002 Apr


Tang D
Warnken KW
Santschi PH

Journal Title

Journal ISSN

Volume Title



The distribution of several trace metals has been studied in the surface waters of Galveston Bay, Texas, in order to assess the impact of complexation with organic and reduced sulfur species on the partitioning of trace metals between particulate and aqueous species. The distribution of trace metals in the filter-passing fraction (Trinity River inputs; (2) the other metals (Cd, Cu, Ni, Pb, and Zn) showed non-conservative mixing behaviour, with mid-salinity maxima, within the estuarine regions of Galveston Bay. The average percentage of metal in the filter-passing fraction, as compared to the total metal load, decreased in that region from 95% to 9% in the order Ni>Cu>Cd>Zn>Pb>Mn>Fe, while an increasing trend was found in the same sequence for the acid-leachable fractions. The average values of Kd1, the particle-water partition coefficient, expressed as the ratio of weak acid-leachable particulate fractions to the filter-passing fractions, increased in the order NiKd1 of Cu with increasing concentrations of suspended particulate matter (SPM), also called the 'particle concentration effect' (PCE), can be eliminated when the free ionic, rather than the total concentration of Cu in the filter-passing fraction is used for calculating this ratio. A particle concentration effect would be expected if the binding of these trace metals by particles is mediated by solution (i.e., filter-passing) phase ligands. Complexation of Cd, Cu, Ni, Pb, and Zn with reduced sulfur species could be one of the causes for the observed linear correlations between metals and reduced sulfur species in both the filter-passing and filter-retained fractions. Significant correlations between Cu in the weak acid-leachable fraction and chlorophyll a (Chl a) concentrations suggest biological mediation of Cu uptake into the particulate fraction




Galveston Bay, trace metals, estuary, oceanography