Effectiveness of native species buffer zones for nonstructural treatment of urban runoff

dc.call-noTD 224 .T4 T38 no.156 GBAYen_US
dc.contributor.authorGlick, Roger H., Mary Leigh Wolfe, and Thomas L. Thurowen_US
dc.description80 pgs.en_US
dc.description.abstractA field study was conducted to determine the influences of vegetation composition, buffer width, and infiltration rate on the effectiveness of native vegetation buffer zones as nonstructural treatments of urban runoff with respect to increasing water quality. The field site was in Austin, Texas with runoff originating in a parking lot with a drainage area of approximately one hectare. The soil was a shallow, well drained clay overlaying limestone. Twelve constituents were measured; fecal streptococci, fecal coliforms, dissolved nitrate, total ammonia, dissolved total Kjeldahl nitrogen, total Kjeldahl nitrogen, total lead, and total suspended solids. Four different vegetation compositions were used as treatments; wooded areas, wooded areas cleared, native grasses mowed, and native grasses unmowed. The vegetation in the mowed and unmowed areas was primarily composed of Johnson grass (Sorghum halepense), Bermuda grass (cynodon dactylon) and mixed legumes. The wooded area was dominated by common red cedar (juniperus virginiana) with scattered live oak (quercus virginiana) and ashe juniper (juniperus ashei). The ground cover was juniper litter and scattered Texas wintergrass (stipa leucotricha). Only total suspended solids, total lead, total Kjeldahl nitrogen, total nitrate, total phosphorus, dissolved nitrate, and dissolved nitrate, and dissolved total phosphorus were influenced at the 0.10 significance level by vegetation composition and buffer width. For pollutants affected by vegetation composition, the unmowed areas generally had the highest mean concentrations of pollutants. For pollutant concentration also increased. Other researchers have reported decreasing pollutant concentrations. One explanation is that this is caused by excess transport capacity associated with the runoff entering the buffer strip. As the runoff moved through the buffer strip, pollutants were detached and transported through the buffer strip. If the buffer strip is sufficiently wide, equilibrium between detachment and transport capacity may be reached and a decrease in pollutant concentration may be seen subsequently. A physically based model was developed to stimulate sediment yield through the buffer strips studied. The model has a stochastic pollutant concentration input generator. Transport capacity is computed using the Yalin equation. Detachment and deposition are computed using a modified version of the Universal soil loss equation. The model was used to stimulate this field study. The model did not stimulate individual rainfall events well. The model predicted the long term average results of this field study with concentrations increasing with buffer width. The coefficient of determination for observed concentrations compared to average predicted concentrations was 0.90.en_US
dc.geo-codeUnited Statesen_US
dc.history10/18/05 easen_US
dc.locationGBIC Circulating Collectionen_US
dc.notesFinanced in part by the Department of the Interior, U.S. Geological Survey, through the Texas Water Resources Institute. Non-federal matching funds were provided by the City of Austin, Texas. 14-08-0001-G2048 03en_US
dc.placeCollege Station, TXen_US
dc.publisherTexas Water Resources Institute, Texas A&M Universityen_US
dc.seriesTechnical Report, Texas Water Resources Institute no. 156en_US
dc.subjecturban runoffen_US
dc.subjectmathematical modelsen_US
dc.subjectvegetative buffer zonesen_US
dc.titleEffectiveness of native species buffer zones for nonstructural treatment of urban runoffen_US