• English
    • español
    • français
    • Deutsch
  • English 
    • English
    • español
    • français
    • Deutsch
  • Login
View Item 
  •   TAMUG DSpace Home
  • Student Work sponsored by TAMUG faculty
  • Student Research Symposium
  • (2012) 8th Annual Student Research Symposium
  • View Item
  •   TAMUG DSpace Home
  • Student Work sponsored by TAMUG faculty
  • Student Research Symposium
  • (2012) 8th Annual Student Research Symposium
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Offshore natural gas hydrate harvesting system

Thumbnail
View/Open
Powerpoint poster for exhibition (2.261Mb)
Date
2012-06-01
Author
Owens, Andrew
Bradberry, Ross
Unger, Ben
Cummings, Chris
Metadata
Show full item record
Abstract
The purpose of this project is to design a system that will allow for production of methane gas from a deep-sea Methane Hydrate Harvester. A satellite host system was chosen in a feasibility report, released in September of 2011, where several concepts were economically and technically evaluated. The satellite host system is comprised of four subsea harvesters that will be deployed to search for and harvest the ocean’s naturally occurring thermogenic methane hydrates. The system will be located in the Gulf of Mexico where there is an active source of methane available for formation and accumulation of hydrates. The focus of the project was the design and stress analysis of the subsea riser, harvesters, and subsea manifold. Each harvester will travel above the seafloor where the top 6 inches of seafloor will be fluidized with warm water jets. Fluidization will allow for the dissociation of methane from the natural hydrate formations. The riser will provide a conduit from the harvesting units to the topside processing and storage vessel, modeled after currently available CNG FPSO hull configuration. The process is modeled after a patented process authored by Dr. Ken Hall (Texas A&M) and Todd Willman (National Thermodynamic Laboratory). Use of time domain, frequency domain, static, and quasi-static, finite element modeling, as well as, time domain hydrodynamic panel diffraction modeling was conducted to design the system components. Ship to shore transport was also analyzed using Freeport’s LNG facility as a delivery point.
URI
http://hdl.handle.net/1969.3/28351
Collections
  • (2012) 8th Annual Student Research Symposium

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
TDL
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
TDL
Theme by 
Atmire NV