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The Galveston Bay National Estuary Program

Texans increasingly express their expectations for a clean environment in terms
of entire ecosystems. Until recently, our tendency was to view environmental
problems in isolated pieces we could understand—indeed this view was
institutionalized (and seemingly immortalized) in an elaborate mosaic of
fragmented jurisdictions. The Galveston Bay National Estuary Program
(GBNEP) is a forerunner in elevating hands-on management of coastal
environments to the level of the ecosystem; and in doing so, is encouraging an
integration of traditionally disparate institutions.

The GBNEP was established under the authority of the Water Quality Act of 1987
to develop a Comprehensive Conservation and Management Plan (CCMP) for
Galveston Bay. The purpose of the CCMP is to address threats to the Bay
resulting from pollution, development, and overuse. To address these threats,
five years of work commenced in 1990, consisting of three phases: (1)
Identification of the specific problems facing the Bay; (2) A Bay-wide effort to
compile data and information to describe status, trends, and probable causes
related to the identified problems; and (3) Creation of the CCMP itself to enhance
governance of the Bay at the ecosystem level. The GBNEP is accomplishing this
work through a cooperative agreement between the U.S. EPA (Region 6) and the
State of Texas (administered by the Texas Water Commission).

The structure of the GBNEP reflects a strong commitment to consensus-building
among all Galveston Bay user groups, government agencies, and the public. The
GBNEP "Management Conference" consists of six Governor-appointed
committees with broad representation, totaling about one hundred individuals.
Meetings of these committees are also open to the public, and public participation
in policy-setting and in Bay management are considered strengths of the
program. When submitted to the Governor of Texas in late 1994, the CCMP will
reflect thousands of hours of involvement (much in the form of volunteer time) by
individuals who in various ways use, enjoy, or help govern this vital coastal
resource.
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PROBABLE CAUSES OF TRENDS IN
SELECTED LIVING RESOURCES

IN THE GALVESTON BAY SYSTEM

Anne H. Walton
Albert W. Green

I. EXECUTIVE SUMMARY

The Galveston Estuary became a participant in the National Estuary Program (NEP) in
October 1988. The program is sponsored by the U.S. Environmental Protection Agency
with the goal of maintaining estuaries in a healthy biological state while providing for
other uses by developing a coordinated local, State and Federal management plan and
program.

The diverse uses of the Galveston Estuary inevitably threaten the many species that
depend on it. The most urbanized areas of Texas lie within the Galveston Estuary
drainage (over 7,000,000 people; Ditton et al. 1989). Approximately half of the nation's
chemical production and a third of its petroleum industry are located in the immediate
vicinity of the Galveston Estuary. Fifty-one percent of the wastewater discharge permits
issued in 1987 by the Texas Water Commission were in its watershed. Yet in 1989, the
Galveston Estuary produced 24-38 percent (by weight) of the Texas coastwide
commercial harvest of finfish, shrimp, crab, and oysters (Johns 1990) and almost 40
percent of the recreational harvest (Green et al. 1991).

This report is part of the effort to characterize the ecosystem of the Galveston Estuary.
Its purpose is to investigate the probable causes of trends in the abundance of certain
species, especially recent declines, as they relate to the overall health of the ecosystem.
For some species, confining the discussion to a geographic scale as small as a single
estuary may give a false impression of its population. But the primary question here is
that of the health of the estuarine system, not the health of a particular species.

The species emphasized are those determined in an earlier study (Loeffler and Walton,
1992) to display chronic declines. The initial list of species to be studied was compiled
by members of the Galveston Bay National Estuary Program Scientific and Technical
Advisory Committee, with an emphasis on ecologically and commercially important
organisms: finfish and shellfish, locally breeding birds, alligators, plankton, and open
bay and marsh benthos. Oysters were studied elsewhere (Powell 1993). Statistically
significant declining trends were most conspicuous for white shrimp, blue crab, and
certain species of colonial waterbirds. These trends are discussed further in the present
report.
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Summary of conclusions

A decrease in the population of white shrimp (Penaeus setiferus) from 1982 through 1990
was documented by Osborn et al. (1992), but newly available monitoring data showed
a rebound in 1991. The 1991-93 El Nino event and associated high inflows brought
fresh water and nutrients into the estuary that were probably mostly responsible. Warm
winters and changes in fishery regulations possibly also contributed to the white shrimp
recovery. White shrimp are frequently more abundant after heavy rains and flooding,
suggesting that the regulation of rivers to completely eliminate flooding might not be the
best policy for a productive estuary.

Separate trend analyses of 20-mm size groups in bag seine and trawl data for blue crab
(Callinectes sapidus) showed that smallest crab increased in numbers, whereas the largest
size classes decreased. Overfishing was the most probable cause of the decline in large
crab, possibly leading to an increase in small crab by reducing cannibalism. The trends
may also have been affected by poorly-understood ecological changes.

Of all birds in the Galveston Estuary, colonial waterbirds were the best documented and
potentially the best indicators of the health of the estuary. Declining trends in those
colonial waterbirds that feed at the marsh-bay interface (Slack et al. in prep.) suggested
that some problem in bay margin habitats may have affected bird populations: the loss
of tidal marsh acreage, fluctuations in prey fish, pollution, or disease. A problem in
nesting habitat was not implicated, but predation, disturbance of rookeries, and the loss
of islands (to subsidence and erosion) place limitations on nesting birds.

The probable causes for the general decline in northern pintails and green-winged teal
were probably outside of the Galveston Estuary, specifically the loss of wetland habitat
in their breeding grounds on the Great Plains. Non-migratory mottled ducks were
affected by the loss of freshwater marsh habitat in Texas.

Wildlife and fishery biologists have long recognized the importance of interannual wet
and drought cycles on the biota of Texas. El Nino-Southern Oscillation (ENSO) cycles,
a global phenomenon centered on the tropical Pacific Ocean, affected the climate in
Texas and consequently the fishery species of Galveston Bay. The mild winters and high
inflows of fresh water and nutrients associated with the most recent El Nino event were
correlated with high populations of some species in 1991, especially white shrimp, grass
shrimp, and some fish that feed on plankton (mullets and bay anchovy). The El Nino
event of 1982-83 had a similar effect. The La Nina drought of 1988-89 correlated with
low populations of some species, specifically blue crab and white shrimp, but with high
populations of salinity-loving organisms such as brief squid.

Intensive shrimp trawling and the loss of wetlands certainly influenced living organisms,
directly and by altering the distribution of nutrients within the estuary, though their
effects were not obvious given the available data.
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Recommendations

In the short term white shrimp and blue crab are probably protected by recent changes
in fishing regulations. Wading birds, however, might be a warning of problems at the
bay margin, and should be closely monitored for possible bioaccumulation of
contaminants and other sources of morbidity and mortality. Bulkheading and
development on or adjacent to tidal or fresh marsh should be prohibited. Provisions
should be adopted to protect existing marsh or to allow new marsh to develop in
recently-inundated areas.

Better data are needed on fishing practices and the seafood harvest, especially by
crabbers and subsistence fishermen. Devices to reduce by catch from shrimp trawling
should be investigated and tested. There is also a lack of long-term, high-resolution
data that would make it possible to relate trends in living resources directly to water and
sediment quality, nutrient regime, and hydrological phenomena in the estuary and Gulf
of Mexico. The role of seasonal and interannual variations in climate should be
thoroughly investigated.

Sufficient freshwater inflow to the estuary must be maintained to maintain productivity.
Regulation must be designed to take climatic fluctuation into consideration. Excessive
regulation of the inflow regime should be avoided. Cycles of drought and flooding are
natural to the estuary and are possibly necessary for maximum long-term productivity.

As recommended by Green (1992), the GBNEP created a committee to design an
integrated sampling program to be used to track short-lived organisms (phyto- and
zooplankton) as indicators of ambient estuarine quality and longer-lived organisms (larger
shellfish and fishes) as indicators of long-term trends in quality. Some species of birds
should also be included in an integrated monitoring program as indicators of the quantity
and quality of mudflat (American oystercatcher), beach (Wilson's plover, least terns),
or marsh (clapper rail, marsh wren) habitats, or of the health of the estuary in general
(seaside sparrow).

This committee has the goal of refining a definition of estuarine health for the Galveston
Estuary and determining how data from the proposed sampling program would
successfully measure this health. This requires that careful thought be given to the way
the estuarine ecosystem works. The committee must also recognize where and how
sampling could be done that would not only address the question of population
abundances but also why they change and whether humans have any control over the
changes. The description of nutrient flux and estuarine energetics should be specifically
addressed. The value of the Galveston Estuary requires this monitoring effort to assure
its wildlife communities are not lost.
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II. INTRODUCTION

The study documented by this report is part of the effort to characterize the ecosystem
of the Galveston Bay estuarine system (including Galveston, Trinity, West, East,
Christmas, Bastrop, and several other minor bays; hereafter referred to as the Galveston
Estuary). Its purpose is to substantiate potential problems, as indicated by significant
declines in species abundances, to evaluate the possible causes of the declines, to call
attention to critical missing data, and to recommend possible management solutions or
additional research.

This report represents the second part of a two-year project. The first phase
concentrated on trend analyses for selected economically and ecologically important
species: fourteen species of finfish and shellfish, eight species of birds, and alligators.
Available data were summarized for open bay benthos, marsh benthos, and plankton.
Oysters were studied elsewhere (Powell 1993). Results of the first phase of the study
were published as "Status and Trends of Selected Living Resources in the Galveston Bay
System" (Loeffler and Walton 1992).

Green (in Loeffler and Walton 1992) concluded that the overall health of the Galveston
Estuary appears to be fair to good. Certain species, however, showed declining trends
that were cause for concern: white shrimp and blue crab among fisheries species, certain
colonial waterbirds (snowy egrets, roseate spoonbills, tricolored herons, and black
skimmers), and some species of waterfowl (northern pintail, blue-winged teal, and
mottled ducks).

The present report draws on the results of the first, and specifically focuses on
underlying causes in addition to the documentation of trends. Factors that affect entire
segments of the biota are discussed in Chapters III and IV. Chapters V, VI, and
focus on those species that showed declines.

MATERIALS AND METHODS

Biological data sets

The standardized, fishery-independent Resource Monitoring Program conducted by the
Fisheries and Wildlife Division of the Texas Parks and Wildlife Department (TPWD)
provided most of the data used for aquatic species (the CF data set; Dailey et al. 1991).
Details for sampling procedures are described in the TPWD Marine Resource Monitoring
Operations Manual which is updated annually. Of the three gear types mentioned in this
report, gill nets have been used in the Galveston Estuary since 1975-76, bag seines since
1977-78, and otter trawls since 1982-83.

Data for white and brown shrimp were collected by TPWD from 1963 through 1980 and
transcribed onto computer files by the National Marine Fisheries Service (the

4



TPWD/NMFS data set). The data were taken using different methods from the CF data
set but were useful for comparison, as discussed by Osborn et al. (1992). Historical
trends for white shrimp are presented in Chapter V.

Recent years of commercial landings data for white shrimp were provided by the
National Marine Fisheries Service. Landings data for blue crab came from the Texas
Parks and Wildlife Department's Fisheries and Wildlife Division (Campbell et al. 1992).
Recent and historical landings data, collected from Annual Reports of the Texas Parks
and Wildlife Department and its ancestral agencies (the Texas Game, Fish and Oyster
Commission and the Texas Game and Fish Commission), were described by Osborn
(1992).

Of the data sets for birds, the most important to this report is the Texas Colonial
Waterbird Survey, conducted annually during two weeks of the summer nesting season
(Slack 1978, Texas Colonial Waterbird Society 1982, Martin 1989, Lange in review).
Also mentioned are: the Mid-winter Waterfowl Transects, conducted from the air by the
Texas Parks and Wildlife Department in cooperation with the U.S. Fish and Wildlife
Service (Haskins 1990); Christmas Bird Counts, day-long tallies collected by a variety
of means, sponsored by the National Audubon Society (Butcher 1990); and Shorebird
Surveys of Bolivar Flats, conducted by the U.S. Fish and Wildlife Service. The data
sets are described in greater detail by Slack et al. (in Loeffler and Walton 1992).

Several State and Federal agencies provided environmental data. These are described
further in Chapter IV.

Statistical analysis

Numerical methods used with fisheries species follow those detailed in Osborn et al.
(1992). Fisheries data permit the calculation of a Catch Per Unit Effort (CPUE), defined
as the number of individuals caught per 0.03 hectare net area in the case of bag seine,
or as per ten minutes net towing in the case of trawl. For aquatic species the results of
trend analyses are shown as annual fitted values plus and minus the standard error,
plotted with mean annual observed CPUE. Analysis of Deviance (ANODE) tables are
presented in Appendix 1.

Size ranges and seasons used for the analysis of fisheries species in this report were
chosen using the same reasoning described by Osborn et al. (1992): a size range was
selected to represent the life stage of interest, and the data were confined to those months
when individuals of that size are most abundant, to minimize zero catches and provide
the best representation of geographic distribution. Data collected in 1991 became
available during the course of this study and were included in analyses where possible.

Correlations between CPUE and environmental variables, described in Chapter III, were
calculated using PROC CORR and PROC REG in SAS (PC Version 6.04). Only simple
linear correlations are presented in Tables 1-3.
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Work accomplished by Slack and others subsequent to the first phase of this project
(1992) used detrended correspondence analysis, following the methodology of Spendelow
et al. (1989), to recognize statistically significant within-community (structural) changes
in assemblages of colonial waterbirds (Gawlik et al. 1992). Results of the analysis are
discussed in Chapter VI.

For many phenomena that are reasonably expected to affect living resources, there were
no data available of a duration, spatial coverage, and resolution comparable to that used
to show population trends. For example, there is no routine monitoring for toxic organic
compounds in the Galveston Bay System (Stanley 1989); expensive analytical procedures
are used only for short-term studies or when there is reason to suspect a problem. Many
"probable causes" are consequently not supported by a rigorous long-term correlation
analysis. Because a cause is not ideally documented, however, does not mean it is not
important. These situations are discussed in Chapter IV.

Species workshops

This study was initiated as a series of meetings with the purpose of assembling a group
of experts to review the data. The participants in these meetings came from state and
federal agencies, universities, conservation organizations, and private industry. The
general approach during the workshops was similar: a presentation of the available data,
a review of life history information from the literature, and a series of leading questions
to guide discussion.

In all cases we attempted to address the following questions: What are the biases of data
collection and analysis? What is the probability that the observed trends are artifacts
rather than real biological phenomena? What is the probable temporal extent of the
trends? Are the trends driven by a particular part of the Galveston Estuary? Are the
trends unique to the Galveston Estuary or part of a larger phenomenon? Can the data
be related to environmental factors, natural or human-induced? What are the possible
consequences if the decline were to continue? And of course, what are the probable
causes and possible remedies for the decline? The results of these discussions and
follow-up studies were the foundations for Chapters V, VI, and VII.
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m. CLIMATIC INFLUENCES ON FINFISH AND SHELLFISH POPULATIONS

An exploratory analysis of bag seine and trawl data shows El Nino-Southern Oscillation
(ENSO) cycles affect some Galveston Bay fisheries species. Yearly bag seine catches
show a significant linear correlation with the Southern Oscillation Index; the relationship
is clearer than for local hydrological factors. ENSO's effect in Galveston Bay is
probably related to a combination of factors, including higher inflows and mild winters
during El Nino events, and droughts during the opposite phase. These environmental
variables and their influence on interannual variability should be considered when
evaluating trends in individual species or the possible effects of human activity.

Introduction

Figure 1 summarizes the results of trend analyses for the twenty-two species caught in
over 10% of all bag seine samples in the Galveston Estuary. Figure 2 shows similar
trend analyses for the fourteen species commonly sampled by trawl. These data were
examined in an effort to recognize widespread trends (if any) and to determine what
factors, environmental or anthropogenic, affect the biota as a whole and should be taken
into account in the analysis of individual species.

As stated by Osborn et al. (1992), the species sampled in Galveston Bay display a
mixture of trends: increases, decreases, no trend at all, or different trends for different
life stages. The available data do not show widespread declines or concurrent changes
that might indicate, for example, a serious pollution problem. Interannual variation in
catch rate is nevertheless intriguing.

The bag seine data for some species show a four- or five-year periodicity (e.g. Figures
1 O, 1R, 1T). Years of peak abundance tend to coincide in several species, specifically
in 1981-83, 1987-88, and 1990-91. These are years when El Nino conditions prevailed
in the Eastern Pacific Ocean. It is visually apparent that El Nino-Southern Oscillation
cycles (ENSO) or related large-scale climatic phenomena may influence catch rates, at
least for some species.

It has not been demonstrated before that ENSO may affect Texas fisheries. It is not a
surprise, however. The link between El Nino cycles and primary and secondary
productivity on the Pacific coast of North America is well-documented (Baumgartner et
al. 1985, Mysak 1986, Lange et al. 1990). Cyclicity in CPUE in the Gulf of Mexico
was observed by Wilson et al. (1992), who described a four- or five-year cycle in the
year-class strength of red drum and black drum in the northern Gulf. El Nino years are
associated with unusually high rainfall and warm winters in the central U.S. (Ropelewski
and Halpert 1986), especially along the Gulf of Mexico. The reverse phase, known as
La Nina, is associated with drought (Trenberth et al. 1988). Tree rings from Mexico,
the southwestern U.S., and Southern Great Plains provide a record of over 270 years
of ENSO-related wet-dry cycles with a periodicity of 3-7 years (Biasing et al. 1988,
Swetnam and Betancourt 1990, Stahle and Cleaveland 1993).
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Figure 1. Mean annual CPUE with fitted values and confidence
intervals (±S.E.) for 22 most common species caught by bag seine.
Percentage of samples containing that species in parentheses.
A. Bar graph for all species present in over 10% of samples,
< = 150 mm TL. B. Blue crab. C. Atlantic croaker. D. Brown
shrimp. E. Striped mullet. F. White shrimp. G. Spot.
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Figure 1 (continued). Mean annual CPUE with fitted values and
confidence intervals (±S.E.) for most common species caught by
bag seine. H. Bay anchovy. I. Grass shrimp. J. Gulf menhaden.
K. Pinfish. L. Longnose killifish. M. Gulf killifish. N. Sheepshead
minnow. 0. Sand seatrout.



Year Year

Figure 1 (continued). Mean annual CPUE with fitted values and
confidence intervals (+S.E.) for most common species caught by
bag seine. P. Hardhead catfish. Q. White mullet. R. Red drum.
S. Bay whiff. T. Spotted seatrout. U. Least puffer. V. Southern
flounder. W. Black drum.
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Figure 2. Mean annual CPUE with fitted values and confidence
intervals (±S.E.) for 14 most common species caught by trawl.
Percentage of samples containing that species in parentheses.
A. Bar graph for all spcies present in over 10% of samples,
<=200 mm TL. B. Atlantic croaker. C. Blue crab. D. White
shrimp. E. Spot. F. Gulf menhaden. G. Sand seatrout.



Year Year

Figure 2 (continued). Mean annual CPUE with fitted values and
confidence intervals (+S.E.) for most common species caught by
trawl. H. Brown shrimp. I. Hardhead catfish. J. Brief squid.
K. Bay whiff. L. Fringed flounder. M. Bay anchovy. N. Least
puffer. 0. Bighead searobin.
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It has long been recognized that shrimp (especially white shrimp) thrive in and just after
wet years (Gunter and Hildebrand 1954, Longley in review). Williams (1969) found an
apparent association between white shrimp catch and mild winters. In contrast, low
water levels in drought years may affect estuarine species by limiting the access of
organisms to nursery marsh (Childers et al. 1990). Johnson et al. (1981) found that wet
years favored young migratory fishes and crustaceans in Galveston Bay. Biomass in
general is higher in wet years than in drought years (Montagna 1991). Powell et al.
(1993) and Wilson et al. (1993) speculate that large-scale climate cycles, such as ENSO,
affect the distribution of contaminants and parasites in oysters along the Gulf coast.
Stanley (1989, Table 7.2) summarized U. S. Department of Commerce Annual Summary
reports on Texas commercial landings to show that climatic events (and market
economics) are the greatest influence on interannual variations in seafood catch.

The mechanism for El Nino's effect on the Texas Gulf coast is unclear. Climate cycles
on such a large scale are expected to affect precipitation over a wide area, therefore to
affect river inflow into an estuary and local precipitation (the major components of total
inflow). ENSO may also affect the probability of extreme temperatures (freezes and
heatwaves) or other weather events (tropical storm or unfavorable wind directions during
larval migration). Inflows (Chapter IV) affect estuarine salinity and water level within
the estuary, therefore the physiological state of organisms, primary productivity, the
accessibility of the estuary to larvae immigrating from the Gulf, and their access to
marsh habitat within the estuary. Heavy inflows during wet years may be important to
flushing toxic materials from the estuary, though heavy runoff may bring in more non-
point-source pollution. The detailed analysis necessary to identify the mechanism is
beyond the capability of this preliminary study.

This chapter specifically addresses the following questions: can any trends in Galveston
Bay organisms be related to environmental variables? Which of these environmental
factors can be shown to be linked to ENSO in Galveston Bay? Which species are most
strongly affected by ENSO? If possible, what is the mechanism of ENSO's influence?
If ENSO is causally linked to the amount and timing of freshwater inflow into estuaries,
the variation associated with it and its effects on fisheries should be taken into account
by resource managers when proposing regulation.

Environmental data sets

Figure 3 shows recent data (monthly mean values) for some of the hydrological variables
commonly linked to shellfish or finfish productivity and for which data were available.
Figure 4 shows their seasonally as mean values by month. For those variables whose
annual cycle differs from a calendar year (January-December), annual means were
calculated using the twelve-month span beginning and ending at the months of that
variable's lowest values. For comparison, Figure 5 shows the seasonality of the most
common species caught by bag seine and trawl. Figure 6 shows the time series of
CPUE for bag seine and trawl, and mean annual CPUE regressed against SOL

13



(1) The Southern Oscillation Index (SOI) data set was provided by the National Weather
Service (courtesy Vernon Kousky, Climate Analysis Center). The index is calculated
using the values of barometric pressure and sea surface temperature at Tahiti and
Darwin, Australia (Chelliah 1990, equation A2). For this study data were available from
as early as 1882 through September 1992; only 1975-1992 are shown in Figure 3A.

The negative phase of the oscillation corresponds to El Nino events along the western
coast of South America; the positive phase indicates La Nina. Figure 3A shows the
severe El Nino of 1982-83, mild El Nino of 1986-87, La Nina of 1988-89, and moderate
El Nino of 1990-92 (an event that continued through 1993).

Month-to-month variation in SOI is small relative to annual variation and there is no
regular unimodal seasonally (Figure 4A). A calendar-year average of mean monthly
SOI (January-December) was used in all correlations on an interannual scale.

(2) River inflow data were obtained from stream gauges maintained by the U. S.
Geological Survey. Figure 3B shows inflows for the Trinity River (the largest single
source of fresh water to Galveston Bay) at the Romayor gauge station. Figure 3C shows
inflows of the Trinity River in combination with twelve other streams (total river
inflow).

The monthly mean of total river inflow was used for correlation on a monthly scale
(Table 1). For correlations on an interannual scale, mean total river inflow was
calculated for January-December and for October-September (Figure 4B).

(3) Daily rainfall data were collected by the National Weather Service. Rainfall records
from 1900 through 1988 at Alvin, Texas, were provided by Ruben Solis of the Texas
Water Development Board. Records from 1950 through 1991 at the Galveston Airport
were provided by the Texas Natural Resource Information Service. Both data sets have
some gaps. Recent years of both data sets are shown in Figure 3D to show how
monthly rainfall can vary from station to station, over a distance of 42 km (26 mi).

The Galveston Airport data set was used for correlation because it has the fewest missing
data. Local rainfall is bimodally seasonal (Figure 4C); the heaviest rainfall is in summer
(May-September), with a minor peak in winter (December-January). Annual mean
rainfall was calculated for January-December and April-March.

(4) Tide gauge records were assembled by NOAA in cooperation with Corpus Christi
State University and the Texas General Land Office. Mean monthly sea level data
collected since 1908 at Pier 21 (on the Galveston Channel) and since 1958 at the
Galveston Pleasure Pier (on the Gulf of Mexico) were provided by James Hubbard of
the National Ocean Service. Both data sets have some gaps. Both data sets are shown
in Figure 3E for comparison; though water level in the bay (Pier 21) is higher, the two
data sets track each other closely.

The effects of land subsidence are visually evident when the entire time series is
considered. Relative sea level has increased ~20% since 1950. Turner (1991) used the
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Figure 3. Time series for environmental variables used for
correlation. A. Southern Oscillation Index. B. Trinity River inflows
at Romayor gauge station. C. Total river inflows to Galveston Bay,
including the Trinity River and twelve other streams.
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Figure 3 (continued). Time series for environmental variables used
for correlation. D. Rainfall at Alvin, Texas and Galveston Airport.
E. Mean sea level at Pier 21 (Galveston Channel) and Pleasure Pier,
Galveston (Gulf of Mexico). F. Salinity, compiled from bag seine,
gill net, and trawl samples.
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Figure 3 (continued). Time series for environmental variables used
for correlation. G. Water temperature, compiled from bag seine,
gill net, and trawl samples. H. Dissolved oxygen, compiled from
bag seine, gill net, and trawl samples. I. Maximum daily difference
per month in water temperature and salinity.
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Pier 21 time series to document subsidence and sea level rise in the northern Gulf of
Mexico. In the time series segment used for correlation (1975-1991; Figure 3E) the
increase in water level is small, so the data were not corrected for subsidence.
However, the increase may bias the results in some cases.

Only the records for the bay (Pier 21) were used for correlation. Figure 4D shows the
highest water levels occur in September (the month of peak rainfall), with a minor peak
in May (the month of peak river inflows). Annual mean sea level was calculated for
January-December only.

(5) Salinity, water temperature, and dissolved oxygen (DO) records were compiled from
the CF data set (Figures 3F, 3G, 3H). The data used for correlation were collected
during bag seine, trawl, and gill net sampling. Consequently the data are more
geographically complete than other available data sets, in that all minor bays and both
mid-bay and bay margin environments are represented. However, sampling is not highly
regular. There is a stronger representation of data from the bay margin during spring
and fall gill netting seasons. The number of samples per month varies from 8 (all bag
seine samples from the first years of the monitoring program) to 144 (during gill netting
season in recent years). Because samples are taken at random sites, not fixed stations,
any month's samples can be biased geographically, especially if the sample size is low.
Monthly means of all records were calculated in order to minimize this geographic bias
and the varying monthly sample size, and only these means were used for correlation.
However, the data could be skewed in unrecognized ways.

Dissolved oxygen records are frequently unreliable. Values over 12 mg/l, indicating
supersaturated conditions at the temperatures and salinities probable in Galveston Bay,
are common. Oxygen supersaturation is possible in Galveston Bay, especially in the
surf zone, but many values are sufficiently high to indicate probable instrumentation
errors (Whitledge, McEachron, pers. comm.). All values over 13 were deleted from the
data set. During 1987 many samples were measured with a probe without correction for
salinity and temperature; they too have been deleted. Consequently the sample size per
month for DO is not large, and some of the readings may still be incorrect. The
correlations shown for DO should be viewed with caution.

Annual mean temperature was calculated for January-December only (Figure 4E).
Salinity was calculated for January-December and June-May (Figure 4F), and DO for
January-December and August-July (Figure 4G).

(6) Temperature and salinity alone may have less effect on living organisms than sudden
changes in temperature and salinity. Special data sets were constructed in an effort to
identify freezes, heat waves, and freshets, or at least those times when the temperature
or salinity gradient in the bay was most extreme. All records of bag seine, trawl, and
gill net samples taken during the same day were compared. When temperature or
salinity records taken during the same day, usually from a considerable distance apart,
are widely different, it probably indicates a fast-moving environmental event. The
greatest such daily difference in any month was retained in the data sets.
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The resulting data sets (Figure 3 I) have the same problems as the original temperature
and salinity data sets, with even smaller sample sizes because multiple samples were not
taken every day. The data do not show any false freezes or freshets (extreme events
not documented independently), but do not have sufficient resolution to clearly show all
known events. For example, the freezes of December 1983, February 1989, and
December 1989 (McEachron et al. in prep.) are not obvious in Figure 3 I (though
unusually low temperatures for December 1989 appear in Figure 3G). Neither are the
freshets of the summers of 1979 or 1989 (Hofstetter 1981, Bowling 1992), though
average salinities in those seasons appear low in Figure 3F. Correlations based on these
data are shown in Table 1 but should be viewed with caution.

Correlation results

Tables 1, 2, and 3 show the results of simple bivariate linear correlations (Pearson's r)
between the environmental variables described above and bag seine and trawl CPUE.
Correlations significant at the 95 percent probability level are shown in bold. Scatter
plots (such as Figure 6C) were also examined visually.

Table 1 shows that mean monthly CPUE correlates with that month's river inflows, sea
level, temperature, and dissolved oxygen, but not with SOI or rainfall. For the most
part this reflects simple seasonality. Figures 5 and 4 show that both bag seine and trawl
catches are highest in late spring and summer, when temperatures are high, river inflows
(and therefore water levels) are highest, and dissolved oxygen is lowest (therefore a
negative correlation). The correlations imply that the bulk of the Galveston Bay biota
is adapted to use the estuarine environment during months of highest inflow and when
the greatest area is inundated.

Monthly bag seine CPUE correlates negatively with salinity, indicating the highest
catches at the bay margin occur in months of low salinity. No similar effect appears for
trawl data, either because mid-bay environments are more moderated, or because the
bimodal seasonality of trawl catches (peaks in both May and November) is not matched
by bimodality in salinity (lowest in May-August).

Bag seine CPUE correlates positively with the months of greatest temperature
differences, because high bag seine catches occur during April and May when the
weather is unsettled and the daily temperature range is large. Similarly, trawl data
correlate with months of greatest salinity differences (April-August), months of high
inflow and/or rainfall. These data, limited as they are, do not show that heat waves,
freezes, or freshets have a devastating effect on the entire community.

On an interannual scale different factors prevail. Of all the environmental factors tested,
the single best predictor of a year's bag seine catch is mean annual SOI (Table 2, first
line; Figure 6C). Dissolved oxygen also correlates significantly with CPUE, probably
because years of high biomass are years of high oxygen demand, therefore low DO
levels.
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Figure 4. Monthly means for selected environmental variables.
A. Southern Oscillation Index, 1970-1991. B. Total river inflow,
1977-1990. C. Rainfall at Galveston Airport, 1950-1991. D. Mean
sea level at Pier 21, Galveston, 1980—1991. E. Water temperature,
1976-1991. F. Salinity, 1976-1991. G. Dissolved oxygen, 1976-
1991.
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Figure 5. A. Monthly mean CPUE for 22 most common species
caught by bag seine, < = 150 mm TL, 1978-1991. B. Monthly
mean CPUE for 14 most common species caught by trawl,
< = 200 mm TL, 1983-1991.
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TABLE 1. CORRELATIONS OF CPUE WITH ENVIRONMENTAL VARIABLES BY MONTH. PEARSON'S R/PROBABILITY.
CORRELATIONS SIGNIFICANT AT 95X PROBABILITY LEVEL IN BOLD.

MAXIMUM
MEAN MEAN MEAN DAILY
GAGED TOTAL SEA MEAN MEAN DISSOLVED TEMP.

SOI. INFLOW RAINFALL LEVEL SALINITY TEMP OXYGEN D1FF.

BAG SEINE
(1978-91)
22 SPP. -0.03/0.70 0.26/0.001 0.08/0.31 0.26/0.001 -0.16/0.03 0.23/0.003 -0.18/0.02 0.19/0.01

TRAWL
(1983-1991)
14 SSP. 0.13/0.18 0.27/0.008 0.02/0.86 0.22/0.02 -0.04/0.69 0.29/0.003 -0.27/0.005 0.08/0.41

SOI 1.0/0.0 0.025/0.75 0.05/0.45 -0.04/0.59 0.09/0.22 0.11/0.13 -0.06/0.42 -0.07/0.32

MAXIMUM
DAILY
SALINITY
DIFF.

0.10/0.19

0.30/0.002

-0.06/0.43



No environmental variables correlated significantly with the annual trawl catch (Table
3). Lag times of 1 month to 2 years were systematically tested without revealing any
significant results. The shorter time series for trawl sampling may obscure real
interannual differences; the suite of organisms caught by trawl may not respond with the
same consistency as those in bag seine; or the effects of environmental events may be
less severe in the moderated mid-bay habitats than at the bay margin.

In contrast, the results of the preliminary analysis of bag seine data warrant a closer
examination of individual species. Mean annual CPUE was calculated for the 22 most
common bag seine species using the same size range-season combinations used for trend
analysis (Figure 1). CPUE was regressed against annual means of environmental
variables, calculated both over a calendar year (January-December) and as annual
cycles. Consequently some of the correlations shown on Table 2 are lagged (indicated
with an asterisk *): that is, one or more of the months used to calculate CPUE postdate
the period of the environmental variable. No effort was made to systematically test all
possible lag times, which lies beyond the scope of this exploratory study.

The three species that correlate significantly with SOI are all important to the
commercial and recreational fishery: white shrimp, red drum, and spotted seatrout.
White shrimp also correlate negatively with DO, but the two fish species do not correlate
with any other environmental variable.

River inflows, rainfall, water level, and salinity are expected to covary. No species
correlates significantly with river inflow at the 95% probability level, though white
mullet correlate at the 92% level. White mullet also correlate with rainfall and salinity.
Grass shrimp correlate with both rainfall and water level, giving credence to the
hypothesis that marsh-dependent species are limited by access to wetlands. Sand seatrout
also correlate with water level. Juvenile Gulf menhaden and adult bay anchovy correlate
significantly with rainfall; the other size classes of bay anchovy correlate marginally with
rainfall or salinity. It is interesting that all these species feed on diatoms and/or
zooplankton.

There is a positive correlation between mean annual temperature and the CPUE of
juvenile pinfish, but a negative correlation for small Gulf killifish, sheepshead minnow,
and black drum. The analyzed season for pinfish is in the spring (when mild
temperatures would be expected to favor growth), but for the three latter species includes
the summer months (when high temperatures can be fatal). Pinfish also correlate
positively with DO. Atlantic croaker, white shrimp, and the bag seine assemblage as
a whole correlate negatively with DO, probably because years of high productivity
(Atlantic croaker and white shrimp being major components of the biomass) are years
of high oxygen demand.

The absence of a significant correlation in this analysis does not mean a variable does
not have an effect. (1) The relationship may not be linear (as demonstrated for inflows
and commercial catches of several fisheries species; Longley in review); (2) the effect
may be stronger on another life stage than the one analyzed; (3) the effect may be lagged
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TABLE 2. CORRELATIONS OF BAG SEINE CPUE WITH ENVIRONMENTAL VARIABLES, BY YEAR. PEARSON'S R/PROBABILITY. PERIOD OF RECORD, SEASONS, AND SIZE RANGES
AS IN FIGURE 1. CORRELATIONS SIGNIFICANT AT 95X PROBABILITY LEVEL IN BOLD.

MEAN MEAN TOTAL TOTAL MEAN MEAN MEAN
GAGED GAGED RAINFALL, RAINFALL, SEA LEVEL MEAN MEAN MEAN DISSOLVED DISSOLVED

SOI INFLOW INFLOW GALVESTON GALVESTON GALVESTON SALINITY SALINITY TEMP OXYGEN OXYGEN
(JAN-DEC) (JAN-DEC) (OCT-SEP) (JAN-DEC) (APR-MAR) (JAN-DEC) (JAN-DEC) (JUN-MAY) (JAN-DEC) (JAN-DEC) (AUG-JULY)

22 SPP. -0.63/0.02 0.35/0.22 0.31/0.30* 0.17/0.55 0.22/0.45* 0.43/0.13 -0.30/0.29 -0.40/0.15 0.11/0.7 -0.54/0.05 -0.63/0.01*
(JAN-DEC)

BLUE CRAB 0.06/0.84 -0.12/0.68 0.08/0.80* -0.05/0.87 0.01/0.97* 0.24/0.42 0.06/0.85 -0.30/0.32* 0.06/0.85 -0.11/0.71 -0.15/0.62*
(JAN-DEC)

ATLANTIC CROAKER -0.49/0.09*0.39/0.19* -0.29/0.37 0.28/0.36* 0.40/0.18 -0.14/0.66*-0.38/0.20*-0.46/0.11 0.38/0.20* -0.26/0.39*-.61/0.03*
(DEC-MAR)

BROWN SHRIMP -0.50/0.08 -0.23/0.45 -0.10/0.75* -0.13/0.67 -0.22/0.47 -0.44/0.14 0.11/0.71 0.01/0.96* -0.09/0.78 -0.28/0.36 -0.10/0.73*
(APR-NOV)

STRIPED MULLET -0.38/0.20 0.14/0.65 0.64/0.84 0.12/0.70 -0.28/0.36 -0.12/0.69 -0.10/0.73 0.16/0.61 0.52/0.07 -0.03/0.91 0.001/0.99
(FEB-MAR)

to
•1^ WHITE SHRIMP -0.61/0.03 0.34/0.25 0.43/0.15* -0.04/0.90 0.22/0.47 0.21/0.48 -0.20/0.51 -0.29/0.34 0.11/0.72 -0.65/0.02 -0.55/0.05*

(JUNE-DEC)

SPOT -0.46/0.09 -0.29/0.34 -0.29/0.34 0.07/0.81 0.07/0.83* -0.37/0.19 0.10/0.74 0.06/0.83* 0.12/0.69 -0.21/0.47 -0.33/0.25
(MAR-JUL)

BAY ANCHOVY (SM) -0.21/0.48 0.23/0.44 0.07/0.82* 0.49/0.09 0.51/0.08 0.006/0.98 -0.36/0.23 0.31/0.30* 0.45/0.12 0.06/0.86 -0.30/0.32*
(MAY-OCT)

BAY ANCHOVY (MED)-0.07/0.82 0.06/0.85 -0.13/0.67*0.35/0.24 0.39/0.19 -0.20/0.51 -0.17/0.57 0.54/0.06* 0.41/0.16 0.10/0.74 -0.16/0.61*
(APR-OCT)

BAY ANCHOVY (LG) 0.12/0.70 -0.02/0.94 -0.18/0.55*0.53/0.06 0.58/0.04 -0.21/0.49 -0.21/0.48 0.48/0.10* 0.21/0.48 0.04/0.90 -0.30/0.32*
(APR-NOV)

GRASS SHRIMP -0.30/0.43 0.27/0.51 0.20/0.63* 0.80/0.009 0.27/0.49* 0.71/0.03 -0.58/0.10 -0.42/0.26*0.06/0.87 -0.34/0.38 -0.47/0.20*
(JAN-DEC)

GULF MENHADEN -0.13/0.65 -0.27/0.37 -0.17/0.58 -0.25/0.39 0.65/0.01* -0.29/0.31 0.22/0.45 -0.44/0.12*0.30/0.29 -0.09/0.75 0.04/0.88
(FEB-JUL)

PINFISH 0.29/0.30 .0.05/0.87 -0.36/0.23 -0.06/0.85 -0.09/0.75*0.08/0.79 0.29/0.31 0.24/0.42* 0.64/0.01 0.47/0.09 0.52/0.05
(MAR-JUN)



SOI INFLOW INFLOW RAINFALL RAINFALL SEA LEVEL SALINITY SALINITY TEMP D.O. D.O.
(JAN-DEC) (JAN-DEC) (OCT-SEP) (JAN-DEC) (APR-MAR) (JAN-DEC) (JAN-DEC) (JUN-MAY) (JAN-DEC) (JAN-DEC) (AUG-JULY)

LONGNOSEKILLIFISH 0.11/0.72 0.06/0.86 0.08/0.80* 0.09/0.75 0.39/0.17* -0.27/0.35 -0.08/0.77 -0.29/0.32 0.10/0.74 -0.006/0.98-0.15/0.61*
(JAN-DEC)

GULF KILLIFISH -0.13/0.65 -0.16/0.61 -0.11/0.72 0.08/0.79 0.06/0.84 -0.29/0.32 -0.07/0.80 -0.12/0.69 -0.63/0.01 0.08/0.80 -0.02/0.95*
(SM) (JUL-AUG)

GULF KILLIFISH 0.12/0.71* 0.09/0.78* 0.16/0.61 0.39/0.18* 0.41/0.16 -0.27/0.38*-0.20/0.51*-0.41/0.17 -0.38/0.20* 0.04/0.72* -0.23/0.44
(LG) (NOV-MAR)

SHEEPSHEADMINNOW -0.13/0.66* 0.05/0.86* -0.11/0.73 0.40/0.18* 0.34/0.25* 0.07/0.82* -0.32/0.29* -0.31/0.30* -0.66/0.01*0.04/0.89* 0.17/0.58*
(NOV-AUG)

SAND SEATROUT -0.28/0.33 0.45/0.12 0.35/0.24* 0.28/0.33 0.38/0.21 0.74/0.002 -0.39/0.17 -0.35/0.22* -0.15/0.62 -0.13/0.65 -0.27/0.35*
(APR-OCT)

HARDHEAD CATFISH -0.39/0.17 -0.10/0.74 0.02/0.96 0.26/0.36 -0.02/0.95 0.06/0.84 -0.20/0.49 0.27/0.38 0.01/0.98 0.10/0.73 -0.32/0.26*
(JUN-SEP)

WHITE MULLET -0.17/0.56 0.50/0.08 0.50/0.08 0.65/0.01 0.53/0.06 0.39/0.17 -0.66/0.01 -0.37/0.21 -0.29/0.31 -0.23/0.43 -0.12/0.69*
(JUN-SEP)

RED DRUM -0.64/0.01 0.39/0.17* -0.37/0.21 0.17/0.57* 0.29/0.32 0.23/0.42 -0.43/0.13* -0.40/0.15 0.25/0.39 -0.47/0.09 -0.39/0.16
(OCT-JAN)

BAY WHIFF -0.43/0.13 -0.10/0.73 -0.08/0.79 -0.02/0.96 0.09/0.78 -0.20/0.50 0.03/0.92 0.12/0.69 0.35/0.22 0.14/0.64 0.12/0.69
(APR-JUL)

SPOTTED SEATROUT -0.58/0.04 -0.23/0.44 -0.08/0.80* -0.09/0.78 -0.17/0.57 -0.44/0.14 0.07/0.82 0.08/0.80 -0.34/0.25 -0.53/0.06 -0.42/0.15*
(JUN-NOV)

LEAST PUFFER -0.44/0.12 -0.13/0.67 0.03/0.92 -0.18/0.55 -0.18/0.56 -0.09/0.74 0.09/0.77 -0.19/0.52 -0.04/0.89 -0.04/0.91 0.14/0.64
(MAY-JUN)

BLACK DRUM -0.13/0.68 -0.15/0.62 -0.19/0.54 0.30/0.32 0.18/0.56 -0.18/0.56 -0.15/0.63 -0.17/0.59 -0.57/0.04 0.09/0.78 -0.16/0.61*
(JUN-AUG)

SOUTHERN FLOUNDER -0.42/0.13 -0.15/0.63 0.07/0.83 -0.24/0.40 0.19/0.51 -0.02/0.96 -0.13/0.65 -0.32/0.26 0.04/0.91 -0.25/0.38 -0.26/0.38
(FEB-MAR)

SOI 1.0/0.000 -0.09/077 *0.68/0.01 0.12/0.61 *0.07/0.77 -0.23/0.40 0.35/0.16 *0.07/0.79 0.26/0.31 0.35/0.16 *-0.08/0.79
(JAN-DEC)

* DATA LAGGED: PERIOD OF HYDROLOGICAL VARIABLE PRECEDES SPECIES SEASON.



Figure 6. Mean monthly CPUE for (A) 22 most common species
caught by bag seine, <=150 mm TL, and (B) 14 most common
species caught by trawl, <=200 mm TL. C. Mean annual CPUE
for bag seine (B) and trawl (T) data plotted against Southern
Oscillation Index, with least-squares regression line for bag seine.
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by a period of time not considered; or, (4) the effect may be strongest in combination
with other variables.

Galveston Bay environmental variables were regressed against SOI in an effort to reveal
the possible mechanism of ENSO in Texas (Table 2, bottom line). Only lagged inflows
(October-September) correlate significantly with SOI. The correlation is positive, that
is, El Nino years are followed by low inflows. Linear correlations of SOI with summer
only (April-September) and winter only (October-March) inflow, rainfall, and water level
were not significant. Neither do lagged inflows correlate with any of the species that
correlate with SOI. This demonstrates the complexity of the covarying phenomena
represented by ENSO. The role of freshwater inflows are discussed in greater detail in
Chapter IV.

The effects of ENSO on living resources

Though the pool of bag seine species and certain abundant species (such as white shrimp)
show their highest abundance during El Nino events, the effect is not the same for all
species. Figures 1D, 1E, 1S, 1U, and 1V show peaks during the mild El Nino of 1987-
88 but not during the severe event of 1982-83. This suggests that some aspect of El
Nino's effect - such as higher water levels and access to marsh - may benefit the
community as a whole, but that other aspects (such as reduced salinity) do not favor
some species.

Trawl data for all species individually were not regressed against environmental variables
because there were no significant correlations using all species pooled, and because
results are suspect given the short time series. Visual inspection of Figure 2 shows that
the highest abundance of white shrimp (Figure 2D) occurs during El Nino years (though
the mild El Nino of 1987-88 had little effect); the low CPUE for blue crab in 1988
(Figure 2C) may be related to the 1988-89 La Nina event; and brief squid, a high-
salinity Gulf species (Figure 2J), was most abundant during the La Nina event and least
abundant in El Nino years.

Interannual climate cycles are probably integral to the estuary's productivity. However,
it is not clear to what extent ENSO directly affects the Texas fishery. Trawl data do not
show a mass response to El Nino events. Bag seine data do, but it is not always certain
that high recruitment to bag seine samples corresponds to large catches of adult fish in
later years. The fishery-independent data for white shrimp show a strong relationship
with ENSO, but commercial catches do not (Chapter IV).

The effects of ENSO vary among estuaries. There may be stronger relationship between
net inflows and ENSO in the estuaries of south Texas than for Galveston Bay. In
Louisiana, where inflows are consistently higher and salinities lower, maximum
biological productivity occurs under moderate conditions, not during El Nino events.
Childers et al. (1990) found the highest commercial CPUE of shrimp in Louisiana
estuaries occurred in years with intermediate water levels. Wilson et al. (1992) found
that the dominant year classes of red drum and black drum in the northern Gulf were
spawned in 1966, 1970, 1974, and 1979. All these years follow El Nino years.
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TABLE 3. CORRELATIONS OF TRAWL CPUE WITH ENVIRONMENTAL VARIABLES, BY YEAR. PEARSON'S R/PROBABILITY,
NO CORRELATIONS SIGNIFICANT AT 95X PROBABILITY LEVEL.

MEAN MEAN
GAGED TOTAL SEA MEAN MEAN DISSOLVED

SOI INFLOW RAINFALL LEVEL SALINITY TEMP OXYGEN

14 SPP. O.14/0.72 -0.25/0.55 -0.36/0.35 0.05/0.90 -0.35/0.36 -0.15/0.71 -0.49/0.18
NO LAG

14 SPP. 0.17/0.66 -0.23/0.57 0.42/0.27 0.19/0.63 -0.28/0.47 0.63/0.07 -0.50/0.17
1 MO. LAG

14 SPP. 0.17/0.65 -0.20/0.63 0.32/0.41 0.30/0.44 -0.28/0.47 0.54/0.13 -0.44/0.24
2 MO. LAG

14 SPP. 0.16/0.68 -0.07/0.86 0.39/0.31 0.32/0.40 -0.26/0.50 0.47/0.20 -0.48/0.20
3 MO. LAG

14 SPP. 0.10/0.80 -0.31/0.45 0.13/0.75 0.33/0.38 0.25/0.52 0.34/0.38 -0.25/0.52
6 MO. LAG

14 SPP. 0.02/0.95 0.03/0.94 0.51/0.16 0.08/0.84 0.58/0.10 0.54/0.14 -0.02/0.96
12 MO. LAG

14 SPP. 0.09/0.81 0.25/0.52 0.07/0.86 0.31/0.42 -0.46/0.21 -0.45/0.22 0.62/0.07
18 MO. LAG

14 SPP. 0.10/0.80 0.44/0.24 -0.46/0.21 0.71/0.03 -0.54/0.13 -0.46/0.21 0.59/0.09
24 MO. LAG

Conclusion

The most striking result of these analyses is that bag seine CPUE in Galveston Bay is
more clearly related to hydrological data measured in the South Pacific (SOI) than to
those measured in Texas. The details of the mechanism remain unclear, however.
ENSO affects a combination of factors, probably in a nonlinear fashion, and complicated
by an array of lag times. It cannot be ruled out that the strongest effects may be on
factors not tested, such as conditions in the Gulf. ENSO can be thought of as a
summary of covarying local conditions (including freshwater inflow and temperature) that
remain unspecified on a local level.
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IV. OTHER ENVIRONMENTAL FACTORS

This chapter discusses some of the natural and anthropogenic factors that affect a wide
variety of organisms in the bay system: freshwater inflows, wetland loss, water and
sediment quality, and shrimp trawling. Only inflow was amenable to direct quantitative
comparison with fisheries species (Chapter III). This study did not reveal unambiguous
effects for any of these factors, other than that they affect the biota in complex ways and
should not be neglected in questions of management.

Freshwater inflows

Inflows and the timing of inflows are undeniably important to the estuarine biota (Texas
Department of Water Resources 1981, Mueller and Matthews 1987, Longley in review).
High secondary productivity after floods has been observed repeatedly on the Texas coast
(e.g. Johnson 1974, Flint and Rabalais 1981). Catch rates in 1991 were moderate to
high in spite of possibly severe freshets during 1990 and 1991 (Figures 1A, 2A). The
reasons for the importance of inflows are complex, however, and covary with other
parameters, such as salinity, nutrients, and water levels.

The most obvious effect of freshwater inflow is the alteration of salinity regime.
Johnson et al. (1981) observed that small fishes and crustaceans were more abundant in
an upper Galveston Bay nursery area during wet years, and speculated that part of the
value of nursery grounds derives from low salinities, which repulse larger fishes and
thereby reduce intense predation. Oysters are a good example of an organism that is
increasingly vulnerable to predation and parasitism as salinity approaches that of
seawater, though prolonged freshets can be fatal.

Ward and Armstrong (1992) documented a decline in salinity in Galveston Bay over the
last three decades. The decline is not clearly associated with changes in inflows. The
authors speculate that salinity may have changed over time in the Gulf of Mexico, or
the interaction between Gulf and estuarine waters may be less intense than in the past.

High inflows also cause high water levels in the estuarine system, therefore large areas
of flooded marsh, and a greater area of nursery habitat accessible to organisms (Childers
et al. 1990). Rainfall can deliver non-point source runoff and debris to the estuary
(Newell et al. 1992), but theoretically heavy inflows can also cleanse the estuarine
system by flushing pollutants. Perhaps the most important effect of freshwater inflow
is the contribution of nutrients to estuarine waters. Nutrients support the phytoplankton
that form the base of the estuarine food web; Lee (in prep.) suggested that nursery
grounds are valuable to juvenile shrimp because of the abundant food in those areas
(diatoms and polychaetes). Rivers are responsible for most of the long-term contribution
of nutrients to estuaries, especially nitrogen and silica (Nixon 1981).

Unlike the weather, inflows can be managed to some degree. Most of the streams
entering the Galveston Estuary have some form of flood control structure, of which Lake
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Livingston on the Trinity River is the largest. It is hypothetically possible to stabilize
the estuarine salinity regime at an optimum level, for example for oyster production.
If flushing and nutrient input are important mechanisms, however, the energy of periodic
floods may be necessary for efficient delivery. Too much stability may lead to a long-
term decline in an organism upon which oysters depend, or an increase in the density
of predators on oysters. Therefore it is important to maintain some variability in
inflows.

The negative aspect of freshwater inflow is that low salinities and/or imbalanced nutrient
inputs may contribute to noxious plankton blooms. The dinoflagellate bloom offshore
of Galveston Island in 1984 was ascribed to low salinity by Harper and Guillen (1989).
The bloom caused fish kills along the Gulf shoreline but did not enter the Galveston
Estuary proper. The 1986-87 red tide (coincident with a mild El Nino event) was
similarly associated with heavy rainfall by Trebatoski (1988). This bloom also affected
the Gulf and estuaries to the south, but not the Galveston Estuary.

Wetland loss

The acreage of nursery habitat (seagrass beds and intertidal vegetation) is directly related
to an area's productivity of certain fisheries species, of which penaeid shrimp are the
best documented (e.g. Turner 1977, Turner and Brody 1983). The loss of tidal marsh
in the Galveston Bay area (mainly from relative sea level rise, bulkheading, and from
development and other land use changes) has progressed for several decades. From the
1950s to 1989 there was a net loss of about 19 percent (32,400 acres) of the estuary's
vegetated wetlands (White et al. 1993), most of it before the mid-1970s. Seagrass beds,
for example, were formerly widespread on the shores of Galveston and Trinity Bays.
The submerged vegetation failed to reestablish after Hurricane Carla in 1961 (Pulich and
White 1990), in part because of ongoing coastal subsidence. With the loss of the
seagrass biome, nursery habitat for unknown quantities of estuarine organisms was also
lost.

The CF data set shows declines for few of the fisheries species that depend on wetland
vegetation for nursery habitat (e.g. brown shrimp, Atlantic croaker; Figures 1C, 1D, 2B,
2H). Declines ascribable to wetland loss are not conspicuous probably because the time
series available postdates the period of most rapid wetland loss, and the former
abundance of marsh-dependent species is unknown. In addition, the work of
Zimmmerman et al. (1990, 1991) suggests that the absence of wholesale declines should
be viewed with caution. Many fisheries species may benefit from the temporary increase
in complexity and/or productivity of drowning marsh as relative sea level rises.
However, if sea level continues to rise at a rate greater than marsh accretion, drowned
marshes will be replaced by relatively unproductive open bay bottom and fisheries
production will probably decline.

The contrast between bag seine and trawl data (Figures 1, 2 and 6, Chapter III) suggests
bay margin habitats and the mid-bay are unalike in their productivity and response to
environmental variables. However they are by no means uncoupled. The quantities of
organic detritus generated in bay-margin marsh environments (Zimmerman et al. 1991)
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are probably important to mid-bay consumers (Texas Department of Water Resources
1981). A decline in productivity at the margins could have serious consequences for
the entire bay.

A less ambiguous indicator of the state of wetlands are those birds that feed in them and
require fairly extensive high-quality habitat. Chapter VII discusses the declining trends
in wading birds that feed at the marsh-bay interface. This may be an early warning of
a potentially serious problem at the bay margin.

Water and sediment quality

Water quality, specifically nutrient load and dissolved oxygen, has improved substantially
since the 1970s (Oppenheimer et al. 1973, Stanley 1989, Ward and Armstrong 1992).
However, the estuary continues to receive nutrients, heavy metals, unknown quantities
of toxic organic compounds, and other pollutants, especially from urban areas (Newell
et al. 1992, Cain 1993, Crocker 1993, Armstrong and Ward in press). King (1989)
reported that concentrations of DDE, DDD, and chlordane in Galveston Bay fish tissues
are below the national average, but that PCB levels are 1.5 times higher than average.
Carr et al. (1993) found significant toxicity in sediments in 12 out of 24 sampled stations
in the Galveston Estuary, especially those adjacent to dredged material disposal areas or
produced water separator platforms. Polluted sites near the Houston Ship Channel are
commonly reported (e.g. King et al. 1987, Carr et al. 1993), and the EPA's
Environmental Monitoring and Assessment Program (EMAP) found high fish pathology
rates in 1991 in East Bay Bayou (Summers and Hornig 1993). Fish kills caused by
hypoxia or pollution may be less common than in past years but continue to occur.

In spite of these other findings, this study did not reveal any trends in living resources
that could be directly related to pollution. Desbonnet et al. (1991) similarly found that
finfish stocks correlate more closely with climate, fishing pressure, economics, and
management than with water quality trends. Unfortunately, fishery-independent
monitoring began in the 1970s, when pollution was more severe than it is now.
Therefore it is unknown to what extent the observed population trends reflect recovery
or a failure to recover. Furthermore there may be localized areas that are intolerably
polluted but are too small to affect a bay-wide trend analysis. Future studies using
Geographic Information System (GIS) technology may reveal some "hot spots". In
addition, the decline in some species of birds that feed at the marsh-bay interface
(Chapter VII) suggests there may be a problem at the bay margin, and contamination of
water or sediments is one possible explanation. Petroleum and its products are especially
likely to concentrate at the estuarine margin and to remain entrapped in marsh sediments
(Kennish 1992).

It is difficult to interpret the implications of the study of ambient water quality in the
Galveston Estuary by Ward and Armstrong (1992). The investigators found declines in
salinity, turbidity, nitrates, and chlorophyll a over the past three decades. The declines
in total suspended solids and turbidity may indicate the estuary's eventual return to a
clearer, healthier state. Declining chlorophyll a and nitrate load are probably associated,
because phytoplankton are probably nitrogen-limited in the Galveston Estuary (Buskey
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1992). These trends probably indicate the success of efforts to improve waste water
treatment and reduce pollution. On the other hand, these water quality trends may also
indicate a present or eventual decline in primary productivity (from reduced nutrient
loading, wetland loss, or other causes) that could cause an eventual decline in other
species. The causes and implications of these water quality trends should be investigated
more thoroughly to ensure that future management is applied appropriately.

Trawling

Several species are known to be vulnerable to shrimp trawling: Atlantic croaker, blue
crab, pinfish, spot, sand seatrout, hardhead catfish, and Gulf menhaden (Bryan et al.
1982, Chai 1991, Nance et al. 1993). It is surprising that none of these "bycatch
species" (with the exception of blue crab, Chapter VI) showed clear declining trends in
this study or that of Osborn et al. (1992). Figures 1C, 1G, 1J, and 1P show declining
trends for croaker, spot, menhaden, and catfish in bag seine catches, but the declines are
uncorroborated by trawl data (2B, 2E, 2F, and 2I).

Nevertheless it is hard to imagine that intensive shrimp trawling has no effect on the
benthos or on bottom-feeders. At least one apparent fish kill, dominated by Atlantic
croaker, was probably the result of discarding by commercial shrimpers (Harper and
Guillen 1989). All bay bottom is trawled that can legally and physically be trawled,
possibly many times during a year. If future monitoring data for 1993 or 1994 show an
increase in the "bycatch species", the recent regulation of shrimping should be
investigated as a probable cause. If future monitoring reveals a long-term decline in
these species, additional regulation should be considered. Devices that economically
permit bycatch species to escape from shrimp trawls should be investigated and tested.
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V. WHITE SHRIMP

A strong linear decrease in trawl catches of white shrimp (Penaeus setiferus) from 1982
through 1990 was documented by Osborn et al. (1992), but newly available monitoring
results for 1991 showed a rebound to 1983 levels (Figure 2D). The 1991 rebound
probably resulted from two events: El Nino conditions during 1990-91 (associated with
high freshwater inflows and mild winters), and new regulations that make shrimping
illegal during two months in the summer in Texas waters. How much of each these
factors contributed to the rebound cannot be determined because they occurred at the
same time.

Geographic extent

Figures 7 and 8 show bag seine and trawl catches of white shrimp from all major bays
in Texas. The largest catches as well as the strongest decline came from the Galveston
Estuary, which is also the area of highest white shrimp abundance in Texas (Figure 7A,
8A). The decline was not unique to the Galveston Estuary nor was it confined to any
one part of the system.

White shrimp caught by trawl also declined from 1982 through 1990 in three southern
estuaries (Aransas, Corpus Christi, and Laguna Madre; Figures 8D, 8E, 8F). The
rebound appeared to be coast-wide; white shrimp abundances for 1990 and/or 1991
appeared higher in both bag seine and trawl catches in most major bays. In the Gulf,
however, only Statistical Zone 19 (offshore of San Antonio and Matagorda Bays) showed
an analogous increase (Figure 9). Fishery-independent sampling in the Gulf has only
been underway since 1986, so the available time series for Gulf data is very short.

It was no surprise that plots of the spatial distribution of CPUE (Osborn et al. 1992,
figs, III.40, III.41, III.42, and III 43) show that white shrimp do not occur everywhere
homogeneously. The estuary was subdivided spatially into areas of high and low catch
rate using an analysis of variance. After two areas were identified, an analysis of
deviance was performed in which Area was included as a categorical variable. The
results show no differences in the slope or direction of the trends for the two areas
(Figure 10). This indicates the 1982-90 decline was not confined to one part of the bay
system.

Temporal extent and reliability

Differences in sample site selection and gear (Osborn et al. 1992) make it statistically
inappropriate to directly compare the TPWD/NMFS historical data set (Figure 11 A) with
the CF data set (Figure 11B). By visual inspection white shrimp appeared to reach a
maximum in 1980. There are no data for 1981, but juveniles (Figures 12A and 12B)
and the spring catch of subadults (Figure 10B) in the CF data set showed a decline after
the 1982 El Nino event. The fall catch of subadults (Figure 10C, 11B) declined after
1984.
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Figure 7. Mean annual CPUE for all sizes of white shrimp
caught by bag seine in major estuaries in Texas. Data from
Dailey et al. (1991) and McEachron (pers. comm.)
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Figure 8. Mean annual CPUE for all sizes of white shrimp
caught by trawl in major bays in Texas. Data from Dailey
et al. (1991) and McEachron (pers. comm.).
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Figure 9. Mean annual CPUE for all sizes of white shrimp
caught by trawl in the Gulf of Mexico. A. Statistical Zone 18.
B. Statistical Zone 19. C. Statistical Zone 20. Data from
Dailey et al. (1991) and McEachron (pers. comm.).
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Figure 10. Mean annual CPUE with fitted values and
confidence intervals (±S.E.) for white shrimp caught by trawl
in areas of high— and low—catch density. Area included in
analysis of deviance as categorical variable. A. Juveniles,
80-100 mm, July-April. B. First-time spawners, 110-130
mm, spring C. First-time spawners, 110—130 mm, fall.
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Figure 11. Mean annual CPUE with fitted values and
confidence intervals (±S.E.) for white shrimp, 110-130
mm TL, August-November. A. 1963-1968 and 1972-
1980, TPWD/NMFS data set. B. 1982-1990, CF data set.
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Bag seine data for young of the year showed no trend, while all size ranges caught by
trawl showed declines until 1991. However, when bag seine data are confined to the
years 1982-1990, the same years analyzed for trawl, the results show a nonlinear decline
(Figure 12A). This suggests that trawl data and bag seine data are not as different as
they appear. Trawl samples, however, are less constrained geographically and taken
more frequently than bag seine samples.

The 1991 rebound and the recognition that white shrimp catches correlate with the
Southern Oscillation Index (discussed in Chapter III), suggested that the declining trend
in the trawl data was probably part of a larger, cyclical pattern, related to climatic
cycles. However, the data may also indicate a real decline superimposed on natural
population cycles. One reason not to dismiss the 1982-1990 decline is the possibility that
it may indicate a problem with overfishing. Caillouet et al. (1980) observed a Gulf-
wide decline in the size of white shrimp from 1959-1976, that continued through 1986
(Cody et al. 1989, Nance et al. 1989). The decline in size is suggestive of growth
overfishing.

Harvest and regulation

Shrimpers are highly mobile and efficient. Shrimp boats have become larger and faster
in recent years and selective pressure on shrimp is intense. The harvest of white shrimp
takes place throughout the year within the estuary (most intensely during April-May and
July-December), and until recently, within the nearshore Gulf of Mexico waters along
the Texas Coast. This "inshore fishery" was often more intense than fishing offshore.

Until 1989, shallow Gulf waters (0-4 fathoms; 0-7.7 m) were open to trawling
throughout the year, saltmarsh nursery areas were open to some bait shrimping, and bay
waters could be trawled 24 hours a day. With the adoption of the 1989 Shrimp
Management Plan (Cody et al. 1989), regulations designed to protect brown shrimp were
changed to extend protection to white shrimp. Shrimping in jurisdictional nursery areas
was banned in 1979, with the exception of those shrimpers who were "grandfathered".
In 1989 the "grandfather" clause expired and nursery areas became completely closed
to shrimping. In 1990, night fishing was banned in the bay during the spring season.
In 1990 and 1991, the 0-4 fathom zone of the Gulf was included in the rest of the Texas
closure and, for the first time, all shrimping in the Gulf off Texas was banned for two
months during the summer. The rebound in white shrimp CPUE in 1990 and/or 1991
may be partially a result of these regulatory changes.

According to data provided by the National Marine Fisheries Service, the number of
pounds of white shrimp harvested from Galveston Bay remained fairly steady during the
1970s and 1980s (Figure 13A), though the number of pounds per trip declined during
the same time (Figure 13B). The CPUE decreased because effort increased while total
harvest remained relatively constant. Reduced landings in 1989, 1990, and 1991
(affected by the regulatory changes discussed above) correspond to a small rebound in
CPUE during 1990-1991. Mean size of the shrimp landed also increased. Landings
(total pounds) of white shrimp from offshore Gulf waters for Texas as a whole decreased
after 1984 but rebounded slightly in 1990 and 1991 (Figure 13C, filled circles).
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Figure 12. Mean annual CPUE with fitted values and confidence
intervals ( -S .E . ) for juvenile white shrimp. A. Young of the
year caught by bag seine, 35—55 mm TL, June-December. Fitted
values shown for 1977-90 and 1982-90. B. Juveniles caught
by trawl, 80-100 mm TL, July-April, 1982-1990.
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Year

Figure 13. A. Annual commercial landings of white shrimp from the
Galveston Estuary. B. Mean annual commercial CPUE (pounds per
trip) of white shrimp from the Galveston Estuary. Data from National
Marine Fisheries Service. C. Total annual white shrimp landings from
Texas estuaries and Gulf of Mexico. Data from Campbell et al. 1992.
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Probable causes of 1983-1990 decline

Obvious (but not all) candidates for the cause of the 1983-1990 decline are listed here
in order of confidence and probability.

1) Natural cycles related to interannual variation in climate. As described in Chapter
III, bag seine catches of white shrimp are correlated with El Nino-Southern Oscillation
cycles, though the exact effect of large-scale climatic patterns on juvenile shrimp is
unclear. The pattern for subadults caught by trawl (Figure 2D) is compatible with a
peak during the severe El Nino of 1982-83, no response to the mild El Nino of 1986-
87, a possible negative response to the La Nina of 1988-89, and another peak with the
development of a moderate El Nino in 1991.

Spring trawl catches of large white shrimp (spawned during fall of the previous year)
correlate with SOI on the 93 percent confidence level. This result is not statistically
significant by most standards (p<0.10), and suspect because of the short time series.
Nevertheless it suggests that the same environmental factors that favor juvenile white
shrimp during an El Nino year also favor adults in mid-bay habitats.

2) Overfishing. This is an obvious probable cause of declining shrimp populations,
given the intensity of the shrimp harvest (Figure 13) and the vulnerability of white
shrimp in the nearshore Gulf. In addition, mariculturists have observed that relatively
minor disturbances can interrupt white shrimp spawning or even cause gravid females
to abort (Lawrence, pers. comm.). The harm caused by shrimping in the spawning area
may not be restricted to those shrimp that are actually caught.

Changes in shrimping regulations, specifically the complete closure of Texas bays and
the near-shore Gulf to shrimping for two months during the time of most intense white
shrimp spawning (effective 1990), correlate with the 1991 rebound in white shrimp.
However the effects of regulation cannot be separated from those of El Nino with the
available data sets.

3) Variation in freshwater inflow. This is separated with difficulty from the El Nino-
climate explanation. The relationship between inflows and large-scale climate cycles
exists, though it is ambiguous. White shrimp abundances did not decline in step with
freshwater inflows. However, high inflows are sometimes correlated with population
peaks in white or brown shrimp during the following year (Gunter and Hildebrand 1954,
Gunter and Edwards 1969). The influx of nutrients during wet years probably cause
high productivity of diatoms, an important part of the white shrimp diet (McTigue and
Zimmerman 1991). The heavy rains of 1990-1991 may also have affected shrimp
populations by flushing contaminants from the estuary, causing low salinities that repel
predators, or facilitating larval recruitment to marsh habitat (Chapter IV).

From 1980 through 1989, inflows averaged 442,000-822,000 acre-feet/month. During
1979 and 1990, in contrast, inflows averaged in excess of 1,000,000 acre-feet/month
(Figure 3C). The apparent peak in the fall catch of large shrimp in 1980 (Figure 11 A)
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and the 1991 rebound (Figure 2D) follow years of unusually high average inflows. A
gradual decline in shrimp numbers may be a consequence of die relatively moderate
inflows that prevailed between 1980 and 1989 and reduced cycling of the nutrients
brought in during floods. After the construction of the Aswan Dam in 1965 eliminated
Nile flooding, nutrient levels in the Delta region dropped, phytoplankton blooms
declined, and shrimp populations in the southeastern Mediterranean also declined
gradually (Aleem 1972, Wadie and Abdel Razek 1985). Excessive moderation of flow
into Galveston Bay may have a similar effect.

4) Interactions with other organisms: disease, parasitism, competition, and non-human
predation. There are few data available on shrimp morbidity. Brown shrimp (Penaeus
aztecus). a possible competitor with white shrimp during at least part of the year, showed
no significant trends during the same time periods (Figures 1D, 2H). It is unclear what
other species are potential competitors because white shrimp occur in large numbers in
the estuary at a season (late summer-winter) when other species are not highly abundant
(Figure 5).

The success of restoration efforts for spotted seatrout and red drum raises the possibility
that shrimp population trends are affected by trends in their predators. White shrimp are
an important prey species (Muncy 1984). Potential predators on white shrimp include:
Atlantic croaker (Figures 1C, 2A, 14A), southern flounder (Figures 1V, 14D), pinfish
(Figures 1K, 14B), spot (Figures 1G, 2E), Gulf Killifish (Figure 1M), spotted seatrout
(Figures 1T, 14G, 14H) , and red drum (Figures 1R, 14E, 14F; Matlock and Garcia
1983, Minello, Zimmerman, and Czapla 1989, Minello, Zimmerman and Martinez
1989). Pinfish and spot both showed increases in adult populations while southern
flounder showed no trend. Atlantic croaker, black drum, red drum, and spotted seatrout,
the four species of Sciaenidae analyzed by Osborn et al. (1992), all showed increases in
adult populations. Predation on white shrimp probably increased during the 1980s.
How this natural predation compared to freshwater inflow, harvest by humans, or other
factors is unknown.

5) Water and sediment quality. White shrimp are affected by pollution and have been
affected in the Galveston Estuary in the past (Gordon et al. 1972). Water quality has
improved in terms of dissolved oxygen and nutrient loading, but heavy metals and other
sediment contaminants remain a problem locally (Chapter IV). A widespread pollution
problem would be expected to affect other shrimp species as well, especially infaunal
brown shrimp. Neither brown shrimp nor grass shrimp, however, show signs of decline
(Figures 1D, 1 I, and 2H). The data do not indicate pollution was responsible for the
decline in white shrimp (though the flushing and dilution effects of recent high inflows
certainly have not been detrimental).

6) Loss of habitat. White et al. (1993) estimated a net loss of 19 percent of the
Galveston Bay area's vegetated wetlands (32,400 acres) between the 1950s and 1989, of
which the greatest proportion was probably intertidal marsh. Marsh and seagrass beds
are prime nursery areas for juvenile white shrimp. However, lab experiments (Minello
and Zimmerman 1985, Minello et al. 1990) show that white shrimp are not as strongly
selective for vegetation as are brown shrimp, which do not show a decline. Drop
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Year Year

Figure 14. Mean annual CPUE with fitted values and confidence
intervals (±S.E.) for large size classes of 6 predatory fish species
caught by trawl (A, B) and gill net (C-H). CPUE as defined in Osborn
et al. (1992). A. Atlantic croaker. B. Pinfish. C. Black drum.
D. Southern flounder. E, F. Red drum. G, H. Spotted seatrout.
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samples in the field show white shrimp are common on bare substrate and less dense
in marsh vegetation than other crustaceans (Zimmerman and Minello 1984). White
shrimp nursery habitat is also crucial to other species, such as Atlantic croaker (Parker
1970, 1971), that do not show a decline (Figures 1D, 2B). Consequently wetland loss
alone is probably not responsible for trends in white shrimp abundance. However,
disturbance of spawning grounds in the Gulf (discussed above) is a form of habitat loss
and may have been a contributing factor to the decline.

7) Change in forage base. Shifts in the food chain, such as a decline in the benthic
marine worms or algae (especially diatoms) important to white shrimp survival and
growth (McTigue and Zimmerman 1991), would be expected to affect other species as
well. Unfortunately, the data to evaluate long-term changes in the biomass or
composition of the benthos are not available.

Conclusions

It is important to distinguish natural climatically-influenced population cycles from the
possible effects of overfishing. If ENSO is the predominating influence, a predicted
switch to La Nina conditions during the latter half of 1993 (Keppenne and Ghil 1992)
will result in low shrimp catches during 1993-94. If high inflows alone resulted in high
catches of white shrimp, the resumption of normal inflows or drought conditions will
result in declining shrimp catches until the next period of flooding. In either case,
declines in dry years and increases after wet years are normal processes. If changes in
fishing regulations are responsible for the high 1991 CPUE, then the rebound should be
coast wide and long term.

A continued decline in white shrimp would be directly detrimental to a major commercial
fishery. Other commercial and recreational fisheries would be indirectly affected in that
a major food source would be removed for southern flounder, spotted seatrout, sand
seatrout, and red drum.
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Figure 15. Mean annual CPUE with fitted values and confidence
intervals (±S.E.) for seven size classes of blue crab caught by
bag seine.
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VI. BLUE CRAB

Trend analyses on different 20-mm size groups in bag seine and trawl data (Figures 15,
16) for blue crab (Callinectes sapidus) showed that the smallest size classes increased in
numbers, whereas the largest size classes decreased linearly. Though growth overfishing
is the most probable cause of the decline in large crab, the trends may also have been
affected by poorly-understood ecological changes such as increased predation and spatial
shifts in habitat.

Trends in size-age groups

Blue crab are caught in substantial numbers throughout the year. Consequently all
months were considered for trend analysis. Sample sizes were large enough that it was
possible to subdivide the entire size range caught by bag seine and trawl into 20-mm size
classes and perform trend analyses on them separately. Bag seine data showed a decline
only in the largest size class of crab (> 125 mm total carapace width, TW) while smaller
size classes increased or showed no trend, a pattern compatible with a directed (growth)
overfishing hypothesis (Figure 15). In contrast, trawl data showed declines in
intermediate size classes as small as the 46-65 mm group, though the decline was
greatest for the market-size groups (Figure 16). The legal size limit for blue crab is five
inches TW (127 mm), but there is anecdotal evidence for considerable illegal harvesting
of undersized crab. "Market size" crab were considered to be all those greater than 115
mm TW.

The intriguing differences in pattern for bag seine and trawl results possibly reflect
differing conditions in bay margin (bag seine) and mid-bay (trawl) habitats. This
suggests intermediate-size crab may be making increased use of the bay margin in
preference to the open bay. However, confining the bag seine data to the years 1982-
91 (the same years as for trawl data and years of densest sampling) resulted in essentially
the same pattern of trends for both data sets, suggesting the differences may be the
result of examining two time series of different lengths.

Recruitment was not a problem. The smallest size classes sampled by both bag seine
and trawl showed increases (Figures 15A, B, C and 16A). If megalopal blue crab are
as widely dispersed and mobile off the Texas coast as they are in other parts of the Gulf
of Mexico (Steele and Perry 1990), strong recruitment could continue even if the adult
population in that bay were reduced.

Geographic extent and trends by sex

Considerable variation may be ascribed to local conditions. Drop-sampler data from a
salt marsh in Galveston Island State Park showed opposite trends from those found here
for bag seine (McTigue and Zimmerman, pers. comm.). Trawl data subdivided by bay
zone (upper and lower estuary) yielded trends differing in shape and magnitude, but not
in direction of slope, implying the overall declines are bay-wide rather than local

47



Figure 16. Mean annual CPUE with fitted values and confidence
intervals (+S.E.) for seven size classes of blue crab caught by trawl.
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phenomena (Figure 17). There were greater slopes and a quadratic component to the
trends in the upper bay (oligohaline-mesohaline), while the lower bay (mesohaline-
polyhaline) showed gentler, linear trends.

The greater intensity of the decline in large crab in the upper bay zone raised the
possibility of directed overfishing of male blue crab (Figure 17C). Female crabs are
obliged to migrate to high-salinity waters in order to spawn but males are not (More
1969, Benefield and Linton 1990). Consequently males tend to concentrate in the fresher
parts of estuaries where they are targeted by the fishery (Millikin and Williams 1984,
McClintock and Marion 1990). Females outnumber males in the CF data set, especially
in trawl samples. Sampling bias is also a possibility if adult male crab are concentrated
far upriver and high in freshwater areas, where neither bag seine nor trawl samples are
taken. Analyses of deviance revealed no significant differences in trends between males
and females that would demonstrate directed overfishing of males. The available time
series is short, however, because sex data were only recorded from 1982 through 1987.
Neither are there obvious differences in the spatial distribution of the two sexes at any
time of year that cannot be explained by a greater number of females in the data set
(Figures 18, 19, 20).

More crab are landed from the Galveston Estuary than any other in Texas
(Hammerschmidt 1985). Because the Galveston Estuary is the largest in Texas,
calculations of coastwide trends, weighted by estuarine area, revealed a coastwide decline
in the size of blue crab that influenced the Blue Crab Management Plan (Cody et al.
1992). However, a comparison of trends among all Texas estuaries (Figures 21, 22)
showed analogous declines in the larger sizes of blue crab only in Aransas Bay (Figure
22D) and the Upper Laguna Madre (Figure 22F). These estuaries are sufficiently
different from Galveston, both physically and economically, that the population trends
of concern here should be considered unique to the Galveston Estuary.

Though recruitment was apparently strong in the Galveston Estuary, Figures 21-22
suggest there may be cause for concern in San Antonio Bay or the Laguna Madre.

Temporal extent and reliability

How long blue crab have been declining is unknown because a historical fishery-
independent data set (previous to 1977) for blue crab is not available. The CF data
indicate the observed trends have prevailed at least since 1978 or 1979 (Figure 15).

It is possible that the observed trends are merely the downward portion of a cyclical
pattern, or that (as discussed for white shrimp) a real decline may be superimposed on
natural population cycles. The discussion here continues on the assumption that the
trends are affected by human activity.
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Figure 17. Mean annual CPUE with fitted values and confidence
intervals (±S.E.) for blue crab caught by trawl in upper and lower
zones of Galveston Estuary. A. Young of the year, 25-45 mm TW,
all months. B. Juveniles, 50—70 mm, all months. C. First—time
spawners, 120-140 mm, all months.
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Figure 18. Spatial distribution of adult (>120 mm TW) blue crab
within the Galveston Estuary, March-July. Trawl data pooled
from 1982-1987. Circles size proportional to mean CPUE.
A. Females. B. Males.
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Figure 19. Spatial distribution of adult (>120 mm TW) blue crab
within the Galveston Estuary, August-October. Trawl data
pooled from 1982-1987. Circles size proportional to mean CPUE.
A. Females. B. Males.
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Figure 20. Spatial distribution of adult (>120 mm TW) blue crab
within the Galveston Estuary, November-February. Trawl data
pooled from 1982-1987. Circles size proportional to mean CPUE.
A. Females. B. Males.
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Figure 21. Mean annual CPUE with fitted values for blue
crab caught by bag seine, 25—45 mm, all months, in all
major Texas estuaries other than Galveston.
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Figure 22. Mean annual CPUE with fitted values for small (25—45 mm
TW), medium (50-70 mm), and large (120-140 mm) blue crab caught
by trawl, all months, in all major estuaries other than Galveston.
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Figure 23. A. Annual commercial landings of blue crab from the
Galveston Estuary. B. Ex-vessel value of blue crab landed from
the Galveston Estuary. C. Total annual blue crab landings from
all Texas estuaries (left axis, hollow circles) and from Gulf of
Mexico (right axis, filled circles). Data from Campbell et al. 1992.
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Harvest and regulation

Commercial landings of blue crab in the Galveston Estuary increased during the last
thirty years (Osborn 1992) as the price of blue crab steadily increased (Figure 23B).
Aerial surveys indicate the number of crab traps in Texas bays roughly doubled from
1977-78 to 1985 (Hammerschmidt and Benefield 1986). It requires little capital to enter
commercial crabbing relative to other fisheries. Data on recreational or bait crabbing
are sparse, though the literature mentions these as important components of the blue crab
fishery (Cody et al. 1992). Anecdotal evidence suggests that crab, taken legally and
illegally, are popular with visitors and are an important food source for coastal residents.
Jaworski (1972) estimated that the actual crab harvest in Louisiana may be twice as high
as that indicated by landings records. Perry et al. (1984) also observed that reported
commercial landings are probably less accurate than similar data for other fisheries, as
a consequence of unrecorded direct sales to fish markets and the public.

Regulations affecting the harvest of blue crab are relatively simple and few: crab traps
must be tagged, the number of crab traps is limited per fisherman and in certain areas,
gear and gear size are restricted, sponge crabs (egg-bearing females) may not be
retained, and crab smaller than five inches (127 mm TW) may not be retained, except
for bait. There are no seasons or bag limits and few areas are restricted. Crabs are
used as bait mainly by black drum fishermen and account for a very small proportion
of the bait fishery; less than 1 % of sport-boat fishermen reported using crab for bait
during 1983-90 (Cody et al. 1992).

Probable causes

Possible causes for the declines in larger blue crab are listed here in order of confidence
and probability. The list is not necessarily comprehensive.

1) Overfishing. Overfishing can result from the excessive legal harvesting of adults,
excessive black-market harvesting of sublegal-size crab, excessive legal harvesting of
juveniles for bait, excessive recreational harvesting (legal and illegal), or ghost fishing
(abandoned crab traps).

The bait fishery is probably minor (Cody et al. 1992). Black market crabbing and ghost
fishing, though known to occur perhaps extensively, are poorly documented. Data on
the recreational harvest are also sparse and estimates of the impact of the recreational
fishery vary widely (Cody et al. 1992). Useful data are available only for the
commercial harvest of market-size crab, which show that crab are increasingly valuable
and exploited with increasing intensity coastwide (Figure 23C). Market-size populations
of blue crab may be declining in step.

Given that larger blue crab (>60 mm) are cannibalistic on small blue crab, the number
of juveniles may be increasing as their predators decline (discussed below). It is also
possible that the harvest of market-size blue crab is sufficiently intense to impose
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selection for small size, as has been proposed for other fisheries (Nelson and Soule
1987).

2) Natural (non-human) predation. Many of the same predators that consume white
shrimp also eat blue crab: Atlantic croaker (Figures 1C, 2B, 14A), southern flounder
(Figures 1V, 14D), spot (Figures 1G, 2E), red drum (Figures 1R, 14E, 14F), spotted
seatrout (Figures 1T, 14G, 14H), black drum (Figures 1W, 14C) and pinfish (Figures
1K, 14B; Matlock and Garcia 1983, Millikin and Williams 1984, Thomas et al. 1990,
Steele and Perry 1990). Other predators include raccoons, birds (clapper rail, great blue
heron, and mergansers), and larger blue crab (Darnell 1958, Millikin and Williams 1984,
Steele and Perry 1990).

Pinfish, spot, spotted seatrout, red drum, and black drum increased in population in
recent years. Predation on small blue crab by fish probably increased, though predation
on small crab by larger blue crab probably decreased. How this natural predation
compared to the harvest by humans or other human-induced factors is unknown.

3) Natural cycles and natural environmental effects. The time series is not long enough
to demonstrate a periodicity greater than two or three years. Though many
environmental variables are known to affect blue crab (e.g. temperature, salinity, wind
direction at the time of megalopal migration into the estuary), most short-term events
have only short-term or local effects. Low harvests and low bag seine catches in 1981
probably resulted from low recruitment that year, but did not affect the overall trend.
Available climatic data (Chapter III) show little correspondence with blue crab CPUE
data.

4) Variation in freshwater inflow. Blue crab thrive at low salinities and occur in
greatest numbers in estuaries receiving substantial fresh water inflow (More 1969).
However, salt water is a limiting factor because a salinity near that of sea water is a
physiological requirement for spawning (More 1969). Records of river inflow to the
Galveston Estuary (Figures 3B, 3C) suggest a possible relationship between inflow and
blue crab recruitment, in that low trawl catches of blue crab during 1988 may be related
to a dry year (associated with a La Nina event). However, the decline in the largest
sizes of blue crab continued in spite of high inflows during 1989-1991.

5) Increased morbidity (disease and parasites). Blue crab pathologies are relatively
well-documented (Millikin and Williams 1984), though their incidence in the Galveston
Estuary is not. The CF data set records observations of infestation by Loxothylacus
texanus (a sacculinid barnacle) only from 1982 through 1987. There is no obvious trend
(Figure 24). Anecdotal evidence (McTigue, pers. comm.; Wardle, pers. comm.)
suggests sacculinid infections are localized, and the rate of infection may be reduced in
1991-1992 as a consequence of high freshwater inflows (Ragan and Matherne 1974).
Though crab morbidity may be a factor in observed population trends, the available data
do not show it.

6) Loss of wetland habitat and SAV. Wetlands, especially submerged aquatic
vegetation, are heavily used by juvenile blue crab (Orth and van Montfrans 1990).
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Wetland loss has undoubtedly affected blue crab, though the most rapid loss of vegetated
wetlands in the Galveston Estuary (discussed in Chapter IV) occurred mostly before the
period of CF sampling. Wetland loss alone does not explain the pattern of trends in
various size classes because juveniles show an increase at the same time that adults,
which use vegetated wetlands less intensely, declined.

7) Mortality or habitat disturbance caused by shrimp trawling. Blue crab are one of
the most common species captured by trawling (Figure 2C) and a well-documented
"bycatch species" (Bryan et al. 1982, Nance et al. 1993). Blue crab are also one of the
species most likely to survive being trawled, exposed to air, and discarded, by virtue of
their hard carapace and resistance to dehydration. Other "bycatch species" (Nance et al.
1993) include Atlantic croaker (Figure 2B), Gulf menhaden (Figure 2F), sand seatrout
(Figure 2G), bay anchovy (Figure 2M), spot (Figure 2F), and brief squid (Figure 2J),
of which only squid show a possible decline. Though direct mortality caused by shrimp
trawling is likely to affect other species before blue crab, the possible role of habitat
disturbance is unknown.

8) Water quality. Blue crab are "hard to kill" and adaptable to a variety of habitats
relative to other species. Pollution is more likely to affect other species before blue
crab, because the crab hepatopancreas is effective at removing common toxins (Millikin
and Williams 1984). The study of toxic contamination in food organisms by Brooks et
al. (1992) found blue crab to be less contaminated than oysters, spotted seatrout, black
drum, or southern flounder.

9) Change in forage base. A food supply problem would similarly appear in other
species before blue crab, which are classified as detritivores, omnivores, or opportunistic
carnivores depending on ontogenetic stage or food availability. Large blue crab are
relatively unspecialized carnivores that consume a variety of fish, crustaceans, mollusks,
and annelids (Perry et al. 1984, Alexander 1986, Steele and Perry 1990, Fitz and
Wiegert 1991).

Figure 24. Annual percentage of blue crab in trawl
samples parasitized by L. texanus (out of all crab typed)
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Discussion and conclusions

The data presently available suggest directed growth overfishing to be the greatest
influence on observed blue crab population trends. This conclusion is qualitative,
however, because blue crab are exceptionally complicated among fisheries species.
Their life cycle is complex, there is a surprising number of unanswered questions about
blue crab biology for such a ubiquitous species, and the many aspects of the harvest are
relatively poorly documented.

A separate, but possibly related, question from the decline in market-size adults is the
apparent increase in intermediate-size blue crab in bag seine catches (Figure 15)
associated with decreases in the same size classes in trawl catches (Figure 16). Bay
margin habitat may be increasingly favored relative to open-bay habitat because of spatial
shifts in food supply. As an alternative explanation, an increase in mortality among
large blue crab (probably human-induced) may result in decreased mortality (by
cannibalism) and increased availability of resources (by reduced competition) for the
smaller size classes.

The study of ambient water quality in Galveston Bay by Ward and Armstrong (1992)
shows a decline in total suspended solids (TSS; turbidity), nitrates, and chlorophyll a
over the past thirty years. As discussed in Chapter IV, these trends probably
demonstrate that regulation of industry has been successful in reducing nutrient loading
(Stanley 1989). In light of the trends in blue crab, they may also indicate a slow decline
in primary productivity in mid-bay regions while bay margins remain relatively
productive. Zimmerman et al. (1991) suggested that drowning coastal marsh is even
more productive than stable marsh, so young blue crab may be taking advantage of the
temporary benefits of relative sea level rise. The long-term effects of declining TSS are
unknown. Drowning marsh will eventually be replaced by open-bay bottom, with
unknown, but probably unfavorable, consequences for blue crab.

A continued decline in large blue crab will eventually lead to a collapse of the
commercial fishery in the Galveston Estuary and probably an intensification of crabbing
pressure elsewhere. The ecological consequences of a reduction or disappearance of
large blue crab are the subject of speculation. Small blue crab are probably more
heavily preyed upon than large blue crab, so continued high recruitment would probably
ensure the presence of an important food item for many species of fish and birds.
However, a severe decline in adult blue crab would probably affect recruitment
eventually, especially if the declines extend beyond the Galveston Estuary. There are
probably food items that are only available to predation or scavenging by crab of some
minimum size, but the possible effects of the absence of the predator or scavenger are
unknown.
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VI. BIRDS

Of all birds in the Galveston Estuary area, colonial waterbirds are the best documented
and potentially the best indicators of the health of the estuary. They are highly visible,
sensitive to environmental changes in nesting or feeding habitat, and high on the food
chain (therefore likely to bioaccumulate contaminants). Declining trends in those
colonial waterbirds that feed at the marsh-bay interface suggest recent reductions in tidal
marsh habitat and/or habitat quality and/or marsh prey species. The probable causes for
the general decline in northern pintails and green-winged teal probably lie beyond the
Galveston Estuary, but declines in non-migratory mottled ducks are driven by conditions
within Texas, such as salt water intrusion into nesting habitat.

Given the high mobility of birds, it is inappropriate to evaluate the health of a species
based on data from a geographic area as small as a single estuary. However, when the
question concerns the health of the estuary (not of a species), birds are appropriate
indicators.

COLONIAL WATERBIRDS

Trend analyses by Slack et al.

The initial study by Slack et al. (1992), "Status and Trends of Selected Vertebrate
Resources in the Galveston Estuary: Birds and Alligators", showed a decreasing trend
in total numbers of certain colonial waterbirds based on data from the Texas Colonial
Waterbird Survey: snowy egrets, Egretta thula: black skimmers, Rynchops niger:
tricolored herons, Egretta tricolor: and roseate spoonbills, Ajaia ajaja (Figures 25, 26,
27, 28). There was also a decrease in the number of birds per colony for these species
plus great egrets (Casmerodius albus: Figure 29), suggesting a change in the structure
of the colonial waterbird community. Olivaceous cormorants (Phalacrocorax brasilianus)
were exceptional among colonial waterbirds in showing an increase (Figure 30). Among
the waterfowl, mottled ducks (Anas fulvigula). northern pintails (Anas acuta), and blue-
winged teal (Anas discors) declined in abundance based on the Mid-winter Waterfowl
Transects (Figures 31, 32, 33), reflecting a widespread trend that has been cause for
concern on the national level (Figure 34). At least six species of shorebirds appeared
to be stable or possibly increasing.

Subsequent work by Slack et al. (in prep.) focused on the Texas Colonial Waterbird
Survey, the most robust data set available on estuarine birds. There was no significant
trend in the total numbers of birds and little or no trend in species richness from 1973
through 1990. However, a detrended correspondence analysis (using the methodology
of Spendelow et al. 1989) revealed significant changes in species and habitat associations.
Birds with similar population trends fell into three different groups, each with similar
feeding habitats.
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1) An inland group (little blue herons, white ibises, cattle egrets, white-faced ibises, and
great blue herons) was composed of freshwater marsh feeders and generalists. There
was no significant change in the number of individuals or the percentage of them in the
community overall. The number of colonies containing these species increased, but in
those colonies where they are present, their proportion in the colony decreased.

2) An open-water group (royal terns, Caspian terns, olivaceous cormorants, Forster's
terns, and Sandwich terns) was mainly composed of open-bay fish-eating birds. The
number of individuals, the number of colonies occupied by them, and the number of
them in the community overall increased. The percentage of their representation in the
colony showed no significant change. Black-crowned night herons, though marsh-
feeding birds, unexpectedly clustered with this open-water group.

3) A marsh group (tricolored herons, snowy egrets, black skimmers, roseate spoonbills,
and great egrets) was made up of birds that feed on small fish and invertebrates at the
marsh-bay interface. This group declined both in total numbers and the proportion the
composed in those colonies where they occur. The number of colonies containing them
increased but the mean colony size decreased (Figures 25, 26, 27, 28, 29). All these
are wading birds except black skimmers, which fell into this group probably because
they feed in nearshore areas where the water surface is smooth rather than in rougher
open bay waters.

Least terns were outliers in this analysis, probably because they are more opportunistic
nesters than strictly colonial and are therefore difficult to count accurately. Laughing
gulls are generalists that showed no population trend and were not associated with
declining species.

Slack et al. (in prep.) concluded that feeding habitat, not nesting habitat, was probably
the controlling factor in the observed trends, because most of the colonial waterbird
species nest together. The decline in marsh-feeding birds is probably correlated with
wetland loss. Although nesting habitat is not suspected of being the controlling factor
in the Galveston Estuary, it can be crucial on a more local scale (Mike Lange, pers.
comm.). The problems of waterbird colonies in the Galveston Estuary area are well
documented: rookeries have been lost to subsidence or erosion, disturbed by humans,
invaded by fire ants, or decimated by mammalian predators. Nesting habitat is
undeniably important, though not necessarily a driving force of the estuary-wide trend.

Reliability and temporal extent

Texas Colonial Waterbird Survey data have been analyzed independently by Glass
(1992), Telfair (in press), and Lange (in review). Their analyses corroborate the results
of Slack et al. (in prep.)- The decline in black skimmers has also been observed
elsewhere (King and Krynitsky 1986).

Telfair (in press) concentrated on inland bird colonies and the possible influence of the
cattle egret on colony life span. He found that excluding colonies for which there were
incomplete censuses (mainly inland colonies) changed the magnitude, but not the slope,
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Figure 25. A. Trend in snowy egrets per year (N=18) and the
number of colonies containing snowy egrets from 1973 to 1990
during Texas Colonial Waterbird Surveys. B. Individual colony
counts and trend in snowy egrets per colony from 1973 to 1990
(N=516) during Texas Colonial Waterbird Surveys. From Slack
et al. (1992).
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Figure 26. Trend in numbers of black skimmers per year (N=18)
and the number of colonies containing black skimmers from 1973
to 1990 during Texas Colonial Waterbird Surveys. B. Individual
colony counts and trend in numbers of black skimmers per colony
from 1973 to 1990 (N=516) during Texas Colonial Waterbird Surveys.
From Slack et al. (1992).
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Figure 27. A. Trend in tricolored herons per year (N=18) and the
trend in numbers of colonies containing tricolored herons from 1973
to 1990 during Texas Colonial Waterbird Surveys. B. Individual
colony counts and trend in tricolored herons per colony from 1973
to 1990 (N=516) during Texas Colonial Waterbird Surveys. From
Slack et al. (1992).
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Figure 28. A. Total number of roseate spoonbills per year (N=18)
and the number of colonies containing roseate spoonbills from 1973
to 1990 during Texas Colonial Waterbird Surveys. B. Individual
colony counts and trend in roseate spoonbills per colony from 1973
to 1990 (N=516) during Texas Colonial Waterbird Surveys. From
Slack et al. (1992).
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Figure 29. A. Total number of great egrets per year (N=18)
and the trend in number of colonies containing great egrets
from 1973 to 1990 during Texas Colonial Waterbird Surveys.
B. Individual colony counts and mean number of great egrets
per colony from 1973 to 1990 (N=516) during Texas Colonial
Waterbird Surveys. From Slack et al. (1992).
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Figure 30. A. Trend in olivaceous cormorants per year (N=18)
and the trend in number of colonies containing olivaceous
cormorants from 1973 to 1990 during Texas Colonial Waterbird
Surveys. B. Individual colony counts and mean number of
olivaceous cormorants per colony from 1973 to 1990 (N=516)
during Texas Colonial Waterbird Surveys. From Slack et al. (1992),
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of the trends in colony number and colony size, lending credence to the conclusion that
the number of colonies has generally increased. The increase in the number of colonies
observed for both the open-water and the marsh group may also be the result of
sampling bias, as more small colonies are discovered and added to the data base.

The true magnitude and exact timing of the trends are unknown because the time span
covered by the Texas Colonial Waterbird Survey (1973 through 1990) may not be long
enough to show its entire extent. The declines could be a normal life cycle of which
only the downward portion was sampled. For long-lived organisms such as birds, a time
series of several decades may be required in order to distinguish population cycles from
superimposed trends. Historical sources (e.g. Strecker 1912, Williams 1938) mention
the presence of species of birds no longer found in the Galveston Estuary region. At the
least, it is valid to conclude that there has been long-term structural change in the bird
community in the Galveston Estuary area.

Geographic extent

Birds are highly mobile organisms with patchy area! distributions. Colonies shift widely
in space and time. Whether a species shows an increase, a decrease, or variation with
little pattern depends largely on the size of the area covered, and larger population
trends may be obscured by focusing on too small a scale (a single colony, a single
refuge, a single estuarine system, or a single state). However, confining the geographic
scale to the estuarine level is not inappropriate if it is recognized that the question being
addressed is that of the health of the estuarine system, not the health of a species.

Probable causes

Possible causes for the declines in marsh-feeding birds are listed here in order of
confidence and probability. The list is not comprehensive.

1) Decrease in quantity of feeding habitat. The loss of tidal wetlands is the most
likely explanation for declining trends in marsh-feeding birds. As discussed in Chapter
IV, roughly 19 percent of the Galveston Estuary's vegetated wetlands were lost between
the 1950s and 1989 (White et al. 1993). Most of the loss probably occurred before the
period of record of the Texas Colonial Waterbird Survey, but the trends shown in
Figures 25-29 may reflect ongoing wetland loss and lagged effects on long-lived
organisms.

2) Decrease in quality of feeding habitat. It is also possible that pollutants concentrate
in the waters, sediments, or resident organisms of bay margin feeding habitat.
Waterbirds are effective bioaccumulators of a variety of contaminants (King 1989).
Buoyant materials, such as oil and grease, tend to concentrate in intertidal areas and
could be specifically detrimental to wading birds and skimmers. In addition to the well-
publicized oil spills, oil and grease are a large component of non-point source pollution
(Newell et al. 1992) and are routinely released during activities related to oil
transportation (Kennish 1992). King and Krynitsky (1986) found higher levels of DDE
(a metabolite of the banned pesticide DDT) in black skimmers than in cormorants or
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gulls, at levels known to cause reproductive problems in some species. White et al.
(1984) found high residues of DDE in black skimmer eggs from the southern and mid-
coast region of Texas. Oil field effluent is another potential source of contamination.
Though there is no direct evidence that bird populations on an estuary-wide scale have
been affected by pollution, it would be surprising if they were not.

3) Decrease in food supply. The quantity of prey fish is a special aspect of the quality
of feeding habitat that can be tested using CF data. Bag seine samples probably
approximate the prey available to birds feeding at the bay margin, though there is no
control for the predator's bias or the prey's predator avoidance mechanisms. Figure 1A
shows a general decline in small fish abundance in bag seine catches from 1982 through
1989, possibly corresponding to the declines in marsh-feeding birds between 1983 and
1990 (Figures 25-29). Figure 2A shows the CPUE for the 14 common species caught
by trawl in the open bay (confined to individuals under 200 mm). The numbers of fish
caught by trawl remained relatively constant and may correlate with the steady or
increasing trends observed among birds that feed over open water.

These generalities must be interpreted with caution because detailed diet information for
waterbirds, especially in coastal areas, is scarce. Wading birds apparently consume a
wide variety of fresh, salt, and brackish water fish and invertebrates (Oberholser 1974,
Telfair et al. 1982, King 1989). Killifish and sheepshead minnow, among the most
important prey species to herons (Rex Wahl pers. comm.), declined over the 1978-
1991 period (Figures 1L, 1M, 1N) though their numbers were fairly constant after 1980.
A study by Morrison et al. (1977) showed the diet of nestling olivaceous cormorants in
Sabine Lake to be dominated by sheepshead minnow (Figure 1N), striped mullet (Figure
1E), Atlantic croaker (Figure 1C), and sailfin molly, species that show no trend or
declines between 1978 and 1991. The population of olivaceous cormorant nevertheless
increased (Figure 30).

A closer examination of Figures 25-30 shows that peaks in the number of birds per
colony tend to coincide in 1973-74 and 1983-84, during and following El Nino events.
The possibility that ENSO affects bird populations is especially conspicuous for
olivaceous cormorants (Figure 30), whose greatest numbers occur in the El Nino years
1973, 1983, 1987, and 1990. If ENSO affects fish populations and if food supply limits
the abundance of wading birds, the high numbers of small fish in 1990-91 should result
in a resurgence of birds feeding on them in 1992 or 1993.

4) Increase in morbidity. The role of disease, whether naturally occurring or
aggravated by human activity, has received little attention. Spalding (1990, 1991)
suggested the proliferation of parasitic nematodes in nutrient-rich eutrophic waters
contributed to die-offs of wading birds in Florida. There is at least one report (Rex
Wahl pers. comm.) of a die-off of black skimmer chicks in the Galveston Estuary area
in 1989-90, caused by starvation or possibly parasitic infection. There are no data to
demonstrate a disease problem in the Galveston Estuary, but the possibility should be
investigated.
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5) Decrease in quantity or quality of nesting habitat. Many factors can be deleterious
to single colonies: inundation and erosion from rising relative sea level; wetland drainage
or sedimentation creating a connection between a bird island and the mainland, allowing
invasion by raccoons or other predators; changing vegetation, caused by cattle egret
guano or by normal succession (Telfair in press). Increased predator density associated
with human activity (e.g. feral dogs and cats, garbage-eating raccoons) and direct
disturbance by humans may also contribute to a decline in the number or size of bird
colonies. Fire ants are locally a problem and should definitely be monitored, though
premature or incorrect treatment for fire ants may cause worse problems (such as
disturbance, contamination, or the resurgence of ectoparasites).

All the factors above are undoubtedly important locally. However, they would be
expected to affect all colonial waterbirds that nest together, not just those with similar
feeding habitat. The proposed creation of new nesting islands for colonial waterbirds
(Glass 1992) would probably be favorable for colonial waterbirds in general but should
not be pursued at the expense of vegetated wetland habitat.

6) Natural cycles. The recognition that bird populations may be linked to small fish
populations (cause 3 above) and climate cycles raises the possibility that the perceived
declines are driven by high counts early in the available time series. Given a longer
time series, there may be no net trend. However, visual inspection of the variability in
Figures 25B, 26B, 27B, 28B, and 29B suggests that authentic declines may be
superimposed on ENSO-related variation. Black skimmers are the most dramatic
example because the peaks in birds/colony declined steadily (Figure 26), in spite of the
relative strength of the climatic events. Olivaceous cormorants peaked during the El
Nino years 1983, 1987, and 1990, but black skimmers did not.

WATERFOWL

A discussion of declines in waterfowl is necessarily general, in part because local
monitoring has been less effective than for colonial waterbirds. Waterfowl are monitored
by the Mid-winter Waterfowl Transects, providing reputable data but only available for
the past five years; and by the Mid-winter Waterfowl Cruise Count, a good source of
long-term records but impractical for trend analysis because there is no control for effort.

Mottled ducks, northern pintails, and blue-winged teal showed a decline in population
(Figures 31, 32, 33). Only mottled duck are not migratory. Northern pintails and blue-
winged teal have been declining nationwide since the 1950s (Figure 34). These species
are probably most strongly affected by factors outside of Texas, such as the loss of small
wetlands to agriculture and development in their breeding grounds on the Great Plains
(e.g. Pederson et al. 1989), or conditions in Central and South American wintering
grounds (Stutzenbaker and Weller 1989). There is little definitive evidence, however.
The most probable local cause of declining waterfowl populations is the loss of
freshwater marsh habitat (discussed in Chapter IV). White et al. (1993) estimate that
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35,600 acres of fresh marsh in the Galveston Bay region were lost between the 1950s
and 1989, most of them drained and converted to uplands.

Other factors possibly contributing to waterfowl population trends on the Texas Gulf
Coastal Plain are numerous but hard to quantify (Cain and Feierabend 1988). Though
Cain (1988) detailed the problem of contaminated wintering waterfowl habitat, Hobaugh
et al. (1989) reported that controls on the use of pesticides resulted in a decrease in
pesticide-related mortality in Texas since the 1970s. Avian cholera may have caused die-
offs of waterfowl with increasing frequency through the 1980s on the rice prairies of
Texas (Hobaugh et al. 1989), though the factors contributing to the severity of the
disease and its possible effect on population levels are unclear. The ingestion of lead
shot was probably a problem for several species of waterfowl, especially mottled ducks
(Moulton et al. 1988). The regulated use of steel shot instead of lead has probably
reduced the degree of lead toxicity. However, such measures probably will not
immediately restore mottled duck populations.

It is interesting that while some species of ducks show declines (Slack et al. 1992), geese
have generally increased (Haskins 1990). Geese appear to be more efficient in using the
winter rice fields of Texas than are ducks (Bateman et al. 1988, Hobaugh et al. 1989).
They also adapt to a variety of breeding habitats, whereas ducks are more closely tied
to aquatic habitats (Pederson et al. 1989). While those ducks that breed in the prairie
pothole country are losing their wetlands to farming, snow geese breed in the Arctic,
beyond intense competition with agriculture. Possibly the decline in ducks is favorable
to geese. The numbers of geese on the Texas Gulf coast will probably decline as rice
farming is lost to other land uses, specifically to development (Bateman et al. 1988).
Furthermore, snow geese may be increasing to the point where populations will decline
because of overcrowded breeding grounds.



Figure 32. A. Numbers of northern pintails per transect from
1986 to 1991 (N=18) during Mid-winter Waterfowl Transects.
B. Trend in northern pintails from 1986 to 1991 (N=18) during
Mid—winter Waterfowl Transects. From Slack et al. (1992).
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Figure 33. Numbers of blue—winged teal per transect from
1986 to 1991 (N=18) during Mid-winter Waterfowl Transects.
B. Trend in blue-winged teal from 1986 to 1991 (N=18) during
Mid—winter Waterfowl Transects. From Slack et al. (1992).
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SHOREBIRDS

Slack et al. (1992) reported a possible increase in shorebird populations based on data
from the Christmas Bird Counts and the Bolivar Flats Shorebird Surveys. The Christmas
Bird Count data should be interpreted with caution, however, because of the high
variability in effort. The Bolivar Flats Shorebird Surveys also indicate there has been
at least a local increase. However, Neill (1992) reported a loss of shorebird habitats
throughout North America during the 1970s and 1980s, and declines in shorebird
populations in north-central Texas over the last 10 years.

DISCUSSION AND CONCLUSIONS

Birds are relatively conspicuous members of the estuarine community and have a record
as indicators of environmental problems. Declining brown pelican, osprey, and falcon
populations in the 1960s raised alarms about the bioaccumulation of pesticides and led
to the nationwide ban on DDT. Royal terns and brown pelicans both feed on open-
water fish and both show strong increases in their use of the Galveston Estuary in recent
years (Slack pers. comm.). This is probably the result of reduced pesticide pollution
(Stanley 1989).

Wading birds are valuable as estuarine indicator species. The eggs and chicks of herons
and egrets have been used to test for contaminants (specifically, DDE and PCBs) as part
of the National Contaminant Biomonitoring Program (Custer et al. 1991), because of
their high trophic level, relatively regular nesting habits, and tendency to bioaccumulate
contaminants. The decline in marsh-feeding birds documented by Slack et al. (in prep.)
is cause for concern. Unlike the declines in waterfowl, marsh-feeding birds are probably
responding to relatively local stresses. The most probable causes are local (estuary-
wide) wetland loss (from bulkheading, subsidence, and development) and/or
contamination. Background data on parasitization and contaminant body burden in birds
throughout the bay would be relatively inexpensive to acquire and potentially revealing.
Black skimmers should be specifically targeted for such a study.

The disappearance of waterbird colonies could have serious consequences for nutrient
cycling in the estuary. Powell et al. (1991) showed that seagrasses in a Florida estuary
increased in biomass as a consequence of nutrient input from bird colonies. Other birds
also probably play important, but poorly understood, roles in the estuarine food web.
Continued declines in birds, especially waterfowl, will disappoint birdwatchers and
hunters, and adversely affect the area's tourist industry.
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Year

Figure 34. Annual population estimates for northern pintails
and blue—winged teal in North America. Data from U. S. Fish
and Wildlife Service.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

White shrimp

The 1983-1990 decline in white shrimp was probably part of a natural, climatically-
influenced population cycle, or the result of overharvesting. Recent regulation of the
shrimping industry should be monitored to ensure that sufficient protection of the white
shrimp resource is in place. The causes of any future decline should be investigated
rigorously. The effects of recent regulatory changes cannot be separated from the
beneficial effects of high freshwater inflows and mild winters associated with the recent
El Nino event. River inflows should not be regulated to the extent that natural
variability in inflows (periodic floods) are eliminated, which would probably have the
effect of reducing long-term shrimp productivity.

Blue crab

The potential problem represented by declines in blue crab populations has also been
recognized by the Texas Parks and Wildlife Department in the formulation of the Texas
Blue Crab Fishery Management Plan (Cody et al. 1992). The Plan recommended that
certain measures be considered for adoption as Department regulations: that crab trap
tending be confined to daylight hours, that rules pertaining to the spacing and marking
of crab traps (now in effect locally) be extended coastwide, that the seizure of abandoned
crab traps be authorized, and that escape vents be used on all traps to reduce bycatch.
In addition, the Plan recommended present monitoring efforts be maintained and
expanded and data collected to assess the current allocation of the blue crab resource
among user groups.

Government and private organizations at all levels can contribute towards the reduction
in wasteful crabbing practices. The recent establishment of a trap identification system
(trap tagging and floats) will provide more precise effort data and reduce the number
of stolen, lost, and abandoned crab traps (Cody et al. 1992). However, law enforcement
will have to be intensified if illegal crabbing is widespread. Efforts to remove debris
from coastal areas should place an emphasis on recovering abandoned crab traps. The
use of biodegradable panels on traps should be promoted to reduce ghost fishing. Above
all, the public should be educated that blue crab are not an unlimited resource.

Birds

The declining trends among wading birds that feed at the marsh-bay interface may be
an early warning of a potentially serious problem with tidal wetlands, whether the
ultimate cause lies in tidal marsh acreage, pollution, small fish populations, or disease.
Bird morbidity and contamination of bay margin habitats should be specifically
investigated. A background study on rates of parasitization and contaminant body burden
in birds (especially black skimmers) throughout the estuary would be relatively
inexpensive to perform.
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Birds are valuable indicator species because they have relatively slow population
turnover, require more extensive high-quality habitat than do most fisheries species, and
are sensitive to many contaminants. Most species are not hunted by man, and therefore
are not affected by one major source of interannual variation. As birds are important
to the health of the bay, the bay is important to the health of birds; the Galveston
Estuary is nationally important to the survival of the piping plover.

The following species have been recommended for monitoring (Eubanks, Ortego, pers.
comm.):

1) The American oyster catcher and the seaside sparrow are non-migratory, obligate
estuarine species. A decline in these species indicates a decline in estuarine health. The
oyster catcher inhabits oyster reefs and mud flats and is not common, but is easy to
recognize. The seaside sparrow, found on the edges of Spartina alterniflora marsh, is
fairly common, though difficult to survey becuase of its small size and cryptic coloration.

2) Certain obligate marsh-dwelling birds should be monitored as indicators of the state
of marsh communities: the clapper rail, associated with Spartina alterniflora: the black
rail, an obligate associate of Spartina spartinae (but possibly hard to monitor because of
its obscure coloration); and the marsh wren, associated with Phragmites and other tall
emergent grasses.

3) Wilson's plover and least terns should be monitored as indicators of beach
environments. Both breed on Galveston Island and are affected by development in the
area.

4) Less appropriate indicator species are those that move frequently between inland and
coastal areas, such as the little blue heron, or are exclusively coastal but highly
migratory, such as the reddish egret.

5) Shorebirds should be monitored because so little is known about the status of their
populations. Programs associated with the Salt Bayou Project are now being designed
to count and identify birds along transects flown by helicopter (B. Ortego, pers. comm.).
This method is relatively economical, but will be biased towards those birds that are
large and easy to identify.

Other factors

There are aspects of the seafood harvest that are not documented by existing means of
collecting data. This is especially true of those fishermen that do not use boat ramps or
keep licensed boats, including a large portion of the recreational and subsistence
fishermen. Landings and effort by the commercial fishery should be documented
independently of self-reporting. Overflights, spot checking of fish markets and roadside
seafood sellers, and spot interviews of recreational and subsistence fishermen should be
continued. The management implications of any data recovered this way should also be
addressed.
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The causes and implications of the trends in water quality parameters reported by Ward
and Armstrong (1992), declines in turbidity, nitrates, and chlorophyll a, should be
investigated thoroughly. Declining primary productivity may be associated with a
positive reduction in nutrient loading from wastewater or runoff, but may also indicate
wetland loss is affecting the ecosystem as a whole. The consequences of not
understanding the causes of these trends and their effects on the estuarine ecosystem are
potentially sever, both ecologically and economically.

The reduction of variation in freshwater inflows involves more than the alteration of the
salinity regime. The role of freshwater inflows in nutrient cycling is one of the most
important estuarine processes. The effects of seasonal and interannual variation in
inflows should be investigated in the context of a thorough study of climate effects on
the Galveston Bay biota and the role of large-scale climatic phenomena. There are many
scenarios for future climate change; to be prepared for change, the existing system needs
to be as well understood as possible.

An ideal sampling program?

The GBNEP created a committee with the purpose of designing a comprehensive
sampling program to monitor changes in the estuarine biota. Ideally, the committee
should coordinate existing private and governmental sampling programs (including the
CF program) to reduce duplication of effort and to address gaps in information. A
monitoring program will be needed well beyond the duration of the Galveston Bay
National Estuary Program (to be completed in fall 1994), and should also involve
rigorous analysis of the data collected, with the goal of assuring the health of the
Galveston Estuary.

Such a program should track short-lived organisms (phyto- or zooplankton) as measures
of ambient estuarine quality, and longer-lived organisms (larger shellfish, fishes, and
birds) as measures of trends in estuarine quality. In addition to the birds listed above,
certain aquatic organisms should be specifically monitored: oysters and spotted seatrout,
because they spend all or most of their lives in a single estuary; and abundant species
such as shrimp, menhaden, and blue crab, because of their economic importance and
role in the food web. These and the organisms discussed in Loeffler and Walton (1992)
are among the most conspicuous and best-documented members of the estuarine biota.
Other organisms are undoubtedly important to the estuarine ecosystem but have received
little attention, such as ctenophores, cnidarians such as cabbage heads, insects, and bay
benthos in general. Organisms should be routinely counted, measured, and checked for
anomalies. Habitat parameters should be routinely recorded (water quality
measurements, sediment composition and friability, vegetation type). Samples should
be spot-checked for contaminants and nutrient levels in a manner that can be directly
related to the sampling offish and birds. Monitoring should specifically address nutrient
cycling and community relationships.

The methodology of the ideal sampling program should be diverse to address a variety
of scales. The best monitoring program is one that can account for local habitats and
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communities, as well as changes in single species, throughout an estuary. Thanks to
remote sensing technology, it is now possible to inventory the vast emergent part of the
estuarine drainage and to quantify vegetation types and substrate with less manpower
than required by ground surveying. Remote monitoring is reasonably accurate if
combined with extensive ground training and field work. Plans for this kind of program
are being discussed in association with the Salt Bayou Project and should be coordinated
with other efforts to monitor the estuary. Though remote sensing cannot be applied in
detail to submerged habitats, it is being profitably applied to the mapping of circulation
patterns. The estuary should be routinely surveyed by helicopter or plane to monitor
fishing and shrimping activity, and to count large organisms such as marine mammals,
turtles, and birds.

Data collection should be directed at measuring the health of the estuary and the factors
that influence it most strongly. The committee should carefully consider the definition
of estuarine health, because this should be integrated with the goals of bay-wide
management efforts. An understanding of estuarine health would require the adequate
description of the structure and function of all components of the estuarine ecosystem,
many of which (discussed above) are unknown.

As part of the bay's yearly physical check-up, the committee should assemble and
distribute a yearly (or more frequently, if necessary) report on the state of health of the
estuary. Such reports could direct attention to problems as they develop and before they
become severe. If any suspicious conditions are found, the reports should pose a
tentative diagnosis, recommend further testing, and suggest treatment. The intrinsic
interest of the Galveston Estuary and its value to the Texas economy require that its
health be taken seriously.
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APPENDIX 1. TREND ANALYSIS TABLES (ANODE AND ANOVA)

Table 4. Analysis of deviance for blue crab caught by bag seine,
25-45 nun TW, January-December, 1978-1990 (Figure 1B) .

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

11

1
1
10

131

1200

Deviance

176.7

16.05
0.44
23.80

342.20

1169.90

M.D.

16.06

26.05
0.44
2.38

2.61

0.97

F

16.48

26.72
0.45
2.44

2.68

P

<0.001

<0.001
0.50
<0.01

<0.001

Table 5. Analysis of deviance for Atlantic croaker caught by bag
seine, 30-50 mm, December-March, 1977-1991 (Figure 1C).

Source of Variation

Month
YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

3

1
1
10

36

423

Deviance

160.12

14.03
6.47
83.05

160.75

533.14

M.D.

53.37

14.03
6.47
8.31

4.47

1.26

F

42.34

11.13
5.13
6.59

3.54

P

<0.001

<0.001
<0.025
<0.001

<0.001

Table 6. Analysis of deviance for brown shrimp caught by bag
seine, 30-55 mm, April-November, 1978-1990 (Figure 1D).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

7

1
1
10

83

845

Deviance

499.30

0.86
4.70
88.90

394.00

1032.10

M.D.

7.13

0.86
4.70
8.89

4.75

1.22

F

5.84

0.71
3.85
7.28

3.89

P

<0.001

>0.25
<0.05
<0.001

<0.001
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Table 7. Analysis of deviance for striped mullet caught by bag
seine, 20-40 mm, February-March, 1978-1990 (Figure 1E) .

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

Table 8. Analysis

D.F. Deviance

1 1.15

1 0.002
1 0.39
10 97.01

12 73.17

207 240.03

M.D. F P

1.15 0.99 >0.25

0.002 0.001 >0.75
0.39 0.34 >0.50
9.70 8.37 <0.001

6.10 5.26 <0.001

1.16

of deviance for white shrimp caught by bag
seine, 35-55 mm, June-December, 1977-1990 (Figure 1F, 12A) .

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

Table 9. Analysis
80 mm, March- July,

Source of Variation

Month

YEAR
Linear
Quadratic
Other

D.F. Deviance

6 142.40

1 0.65
1 0.08
11 147.30

73 390.20

772 1180.30

of deviance for spot
1978-1991 (Figure 1G)

D.F. Deviance

4 142.70

1 15.23
1 1.58
11 25.9

M.D. F P

23.73 15.52 <0.001

0.65 0.43 >0.50
0.08 0.05 >0.75
13.39 8.76 <0.001

5.34 3.50 <0.001

1.53

caught by bag seine, 35-
•

M.D. F P

35.67 25.22 <0.001

15.23 10.76 0.001
1.58 1.11 >0.25
2.35 1.66 >0.05

Month x Year 51 213.3 4.18 2.96 <0.001

Corrected error 600 848.9 1.41
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Table 10. Analysis of deviance for bay anchovy caught by bag
seine, 15-34 nun, May-October, 1978-1990 (Figure 1H) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

5

1
1
10

59

419

42.69

20.86
6.19

149.34

196.91

257.71

8.54

20.86
6.19
14.93

3.34

0.615

13.88

33.92
10.06
24.28

5.43

<0.001

<0.001
<0.005
<0.001

<0.001

Table 11. Analysis of deviance for bay anchovy caught by bag
seine, 35-54 mm, April-October, 1978-1990 (Figure 1H).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

6

1
1
10

71

710

30.70

33.35
1.38

258.50

251.50

841.1

5.12

33.35
1.38
25.85

3.54

1.20

4.26

27.80
1.15
21.54

2.95

<0.001

<0.001
>0.25
<0.001

<0.001

Table 12. Analysis of deviance for bay anchovy caught by bag
seine, >=55 mm, April-November, 1978-1990 (Figure 1H).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

7

1
1
10

83

847

85.30

15.74
0.51

106.11

299.70

1093.60

12.18

15.74
0.51
0.61

3.61

1.29

9.44

12.19
00.39
8.22

2.80

<0.001

<0.001
>0.50
<0.001

<0.001
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Table 13. Analysis of deviance for grass shrimp caught by bag
seine, 25-35 mm, January-December, 1983-1991 (Figure II).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
l
6

88

1136

81

6.73
48.26
26.3

578.30

1446.80

7.36

6.73
48.26
4.38

6.57

1.27

5.78

5.29
37.89
3.44

5.16

<0.001

<0.025
<0.001
<0.005

<0.001

Table 14. Analysis of deviance for Gulf menhaden caught by bag
seine, 20-30 mm, February-July, 1978-1991 (Figure 1J) .

Source of variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

5

1
1
11

64

499

127.70

14.82
9.64

187.20

357.4

631.0

25.54

14.82
9.64
17.02

5.58

1.26

20.20

11.72
7.62
13.46

4.42

<0.001

<0.001
0.005
<0.001

<0.001

Table 15. Analysis of deviance for juvenile pinfish caught by bag
seine, 40-60 mm, March-June, 1978-1991 (Figure 1K).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

3

1
1
11

38

424

72.69

1.56
3.271
40.77

131.91

527.51

24.23

1.56
3.271
3.71

3.47

1.24

19.48

1.26
2.62
2.98

2.80

<0.001

>0.25
>0.10
<0.001

<0.001
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Table 16. Analysis of deviance for longnose killifish caught by
bag seine, 45-75 mm, January-December, 1978-1991 (Figure 1L) .

Source of Variation D.F. Deviance N.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
11

142

1241

84.30

12.26
63.85
124.40

577.50

1299.20

7.66

12.26
63.85
11.309

4.07

1.05

7.32

11.71
60.99
10.89

3.88

<0.001

<0.001
<0.001
<0.001

<0.001

Table 17. Analysis of deviance for Gulf killifish caught by bag
seine, 35-85 mm, July-August, 1978-1991 (Figure 1M).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

1

1
1
11

13

229

5.77

11.00
.61

34.09

44.55

206.11

5.77

11.00
.61

3.10

3.43

.90

6.41

12.22
.68

3.44

3.81

<0.025

<0.001
>0.25
<0.001

<0.001

Table 18. Analysis of deviance for Gulf killifish caught by bag
seine, 45-85 mm, November-March, 1978-1991 (Figure 1M).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year
<0.001

4

1
1
10

48

25.87

92.4
24.88
69.90

197.31

6.47

92.4
24.88
6.99

4.11

5.52

78.91
21.25
5.97

3.52

<0.001

<0.001
<0. 001
<0.001

Corrected error 510 597.13 1.17
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Table 19. Analysis of deviance for sheepshead minnow caught by bag
seine, 25-50 mm, November-August, 1978-1991 (Figure 1N).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

9

1
1
10

108

987

237.6

38.38
59.91
139.80

539.90

1195

26.40

38.38
59.91
13.98

5.00

1.21

21.81

31.70
49.48
11.55

4.13

<0.001

<0.001
<0.001
<0.001

<0.001

Table 20. Analysis of deviance for sand seatrout caught by bag
seine, 35-55 mm, April-October, 1978-1991 (Figure 1 O).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

6

1
1
11

77

647

75.59

27.15
5.37

128.56

270.17

627.27

12.60

27.15
5.37
11.68

3.51

0.97

13.00

28.00
5.54
12.05

3.62

<0.001

<0.001
<0.01
<0.001

<0.001

Table 21. Analysis of deviance for hardhead catfish caught by bag
seine, 50-150 mm, June-September, 1978-1991 (Figure 1P).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

3

1
1
11

38

475

22.87

12.98
10.55
61.31

133.46

458.52

7.62

12.98
10.55
5.57

3.51

.97

7.90

13.45
10.93
5.77

3.64

<0.001

<0.001
<0.001
<0.001

<0.001
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Table 22. Analysis of deviance for white mullet caught by bag
seine, 35-105 nun, June-September, 1978-1991 (Figure 1Q).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

Table 23.
25-65 mm,

Source of

D.F

3

1
1
11

88

422

Deviance

157.

23.
57.
83.

148.

607.

46

90
34
12

87

58

M.D

52.

23.
57.
7.

1.

1.

Analysis of deviance for red drum
October- January, 1977-1991 (Figure

Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

Table 24.
25-65 mm,

Source of

Analysis of
April- June,

Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F

3

1
1
11

39

323

Deviance

66.

10.
6.

100.

103.

315.

63

27
38
18

34

33

deviance for bay
1978-1991 (Figure

D.F

2

1
1
11

25

239

Deviance

0.

18.
40.
69.

113.

235.

30

60
38
49

98

83

M.D

22.

10.
6.
9.

2.

•

49

90
34
56

69

44

36

16
39
5

1

F

.46

.60

.83

.25

.17

caught by
1R).

•

21

27
38
11

65

98

22

10
6
9

2

F

.75

.52

.54

.33

.71

whiff caught by
IS).

M.D

0.

18.
40.
6.

4.

*

•

15

60
38
32

56

99

18
40
6

4

F

.152

.85

.93

.40

.62

P

<0.001

<0.001
<0.001
<0.001

>0.10

bag seine,

P

<0.001

<0.005
0.01
<0.001

<0.001

bag seine,

P

>0.75

<0.001
<0.001
<0.001

<0.001

99



Table 25. Analysis of deviance for spotted seatrout caught by bag
seine, 35-75 mm, June-November, 1978-1990 (Figure 1T).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

5

1
1
10

59

381

60.85

52.85
1.28
52.74

217.55

322.32

12.17

52.85
1.28
5.27

3.69

0.85

14.38

62.47
1.51
6.23

4.36

<0.001

<0.001
>0.10
<0.001

<0.001

Table 26. Analysis of deviance for least puffer caught by bag
seine, 20-40 mm, May-June, 1978-1991 (Figure 1U).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

l

1
1
11

12

176

0.02

0.07
11.14
112.64

39.07

184.18

0.02

0.07
11.14
10.24

3.26

1.04

0.02

0.07
10.64
9.78

3.11

>0.75

>0.75
>0.001
<0.001

<0.001

Table 27. Analysis of deviance for southern flounder caught by bag
seine, 20-45 mm, February-March, 1978-1991 (Figure 1V) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

1

1
1
11

13

109

4.56

3.90
0.33
65.62

49.40

177.49

4.56

3.90
0.33
5.97

3.80

0.93

4.88

4.17
0.35
6.39

4.07

<0.025

<0.05
>0.50
<0.001

<0.001
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Table 28. Analysis of deviance for black drum caught by bag seine,
55-85 mm, June-August, 1978-1990 (Figure 1W).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

2

1
1
10

23

206

Deviance

20.69

72.51
1.74
63.09

40.03

150.63

M.

10.35

72.51
1.74
6.31

1.74

0.73

D.

14.15

99.16
2.38
8.63

2.38

F P

<0.001

<0.001
>0.10
<0.001

<0.001

Table 29. Analysis of deviance for Atlantic croaker caught by
trawl, 115-135 mm, March-September, 1983-1990 (Figure 2B, 14A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

6

1
1
5

42

1064

153.20

9.54
0

19.70

184.60

1033.80

25.52

9.54
0
3.94

4.39

0.97

26.28

9.82
0
4.06

4.52

<0.001

>0.001
>0.75
<0.001

<0.001

Table 30. Analysis of deviance for blue crab caught by trawl, 25-
45 mm TW, January-December, 1983-1990 (Figure 2C).

Source of Variation D.F. Deviance H.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
l
5

77

1711

255.30

5.70
67.80
102.80

289.30

1420.80

23.21

5.70
67.80
20.56

3.76

0.83

27.95

6.86
81.56
24.76

4.52

<0.001

<0.01
<0.001
<0.001

<0.001
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Table 31. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1983-1990 (Figure 2C) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
5

77

1749

850.70

9.10
0.00
49.80

231.70

1408.10

77.34

9.10
0.00
9.96

3.01

0.81

96.06

11.30
0.00
12.37

3.74

<0.001

<0.001
>0.75
<0.001

<0.001

Table 32. Analysis of deviance for blue crab caught by trawl, 120-
140 mm, January-December, 1983-1990 (Figure 2C) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
5

77

1463

312.70

32.90
0.00
29.20

171.30

918.70

28.43

32.90
0.00
5.84

2.22

0.63

45.27

52.39
0.00
9.30

3.54

<0.001

<0.001
>0.75
<0.001

<0.001

Table 33. Analysis of deviance for white shrimp caught by trawl,
110-130 mm, April-May, 1982-1990 (Figure 2D).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

1

1
1
6

10.37

109.61
0.003
21.79

10.37 11.82 <

109.61 124.91 <
0.003 0.003 >
3.63 4.14 <

0.001

0.001
0.75
0.001

Month x Year

Corrected error

8 28.37 3.59 4.09 <0.001

342 300.08 O.88
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Table 34. Analysis of deviance for white shrimp caught by trawl,
110-130 mm, August-November, 1982-1990 (Figures 2D, 11B).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

3

1
1
6

24

685

Deviance

40.62

100.00
32.74
37.22

210.58

638.82

M.D.

13.54

100.00
32.74
6.20

5.02

0.93

F

14.52

107.23
35.10
6.65

5.39

P

<0.001

<0.001
<0.001
<0.001

<0.001

Table 35. Analysis of deviance for spot caught by trawl, 80-130
mm, May-September, 1983-1991 (Figure 2E).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

4

1
1
6

32

817

23.86

3.58
0.49
14.04

136.82

637.34

5.97

3.58
0.49
2.34

4.27

0.78

7.64

4.58
0.63
3.00

5.48

<0.001

<0.05
>0.25
<0.01

<0.001

Table 36. Analysis of deviance for Gulf menhaden caught by trawl,
110-120 mm, January-December, 1983-1990 (Figure 2F) .

Source of variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
5

77

1730

80.20

4.73
13.80
56.20

311.20

1213.90

7.29

4.73
13.80
11.24

4.04

0.70

10.39

6.74
19.67
16.02

5.76

<0.001

<0.01
<0.001
<0.001

<0.001
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Table 37. Analysis of deviance for sand seatrout caught by trawl,
65-85 mm, May-December, 1983-1990 (Figure 2G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

7

1
1
5

49

1046

41.91

72.14
0.11
31.69

101.12

550.50

5.99

72.14
0.11
6.34

2.06

0.53

12.38

149.17
0.23
13.11

3.92

<0.001

<0.001
>0.50
<0.001

<0.001

Table 38. Analysis of deviance for sand seatrout caught by trawl,
140-160 mm, April-November, 1983-1990 (Figure 2G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

7

1
1
5

49

1046

23.28

1.70
0.62
37.88

101.12

550.50

10.47

1.70
0.62
7.58

2.06

0.53

19.89

3.23
1.18
14.40

3.92

<0.001

>0.05
>0.25
<0.001

<0.001

Table 39. Analysis of deviance for brown shrimp caught by trawl,
85-110mm, May-August, 1983-1990 (Figure 2H).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

3

1
1
5

21

589

198.61

0.22
0.97
24.015

96.01

593.36

66.20

0.22
0.97
4.80

4.57

1.01

65.72

0.22
0.96
4.77

4.54

<0.001

>0.50
>0.25
<0.001

<0.001
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Table 40. Analysis of deviance for hardhead catfish caught by
trawl, >=140 mm, March-August, 1983-1991 (Figure 2 I).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

5

1
1
6

40

988

Deviance

49.62

18.15
52.10
54.44

142.26

758.81

M.D.

9.92

18.15
52.10
9.07

3.56

0.77

F

12.94

23.63
67.84
11.81

4.63

P

<0.001

<0.001
<0.001
<0.001

<0.001

Table 41. Analysis of deviance for brief squid caught by trawl,
20-40 mm, September-November, 1983-1991 (Figure 2J) .

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

2

1
1
6

16

438

Deviance

6.76

39.37
61.21
45.06

70.69

320.30

M.D.

3.38

39.37
61.21
7.51

4.42

.73

F

4.62

53.84
83.70
10.27

6.04

P

0.01

<0.001
<0.001
<0.001

<0.001

Table 42. Analysis of deviance for brief squid caught by trawl,
40-70 mm, February-May, 1983-1991 (Figure 2J) .

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

3

1
1
6

24

570

Deviance

56.00

7.85
24.01
47.86

97.44

394.51

M.D.

18.67

7.85
24.01
7.98

4.06

0.69

F

26.97

11.35
34.69
11.53

5.87

P

<0.001

<0.001
<0.001
<0.001

<0.001
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Table 43. Analysis of deviance for bay whiff caught by trawl, 80-
100 mm, July-September, 1983-1991 (Figure 2K).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

2

1
1
6

16

456

0.07

21.21
5.34
55.73

51.64

303.39

0.03

21.21
5.34
9.29

3.23

.67

0.05

31.879
8.03
13.96

4.85

>0.75

<0.001
<0.005
<0.001

<0.001

Table 44. Analysis of deviance for fringed flounder caught by
trawl, 80-100 mm, September-November, 1983-1991 (Figure 2L).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

2

1
1
6

16

419

3.03

87.18
6.97
49.21

34.38

265.82

1.515

87.18
6.97
8.20

2.15

0.63

2.39

137.41
10.99
12.92

3.39

>0.05

<0.001
<0.001
<0.001

<0.001

Table 45. Analysis of deviance for bay anchovy caught by trawl,
15-34 mm, December-March, 1983-1990 (Figure 2M) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

3

1
1
4

18

398

34.94

18.54
4.13
45.30

71.71

323.26

11.65

18.54
4.13
11.32

3.98

0.81

17.59

28.01
6.24
17.11

6.02

<0.001

<0.001
<0.025
<0.001

<0.001
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Table 46. Analysis of deviance for bay anchovy caught by trawl,
35-54 mm, January-December, 1983-1990 (Figure 2M) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
5

77

1483

37.90

233.80
42.08
57.20

242.40

961.80

3.44

233.80
42.08
11.44

3.15

0.65

5.31

360.52
64.89
17.64

4.85

<0.001

<0.001
<0.001
<0.001

<0.001

Table 47. Analysis of deviance for bay anchovy caught by trawl,
>=55 mm, January-December, 1983-1990 (Figure 2M) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

l
1
5

77

1179

100.29

184.20
29.56
87.69

224.41

685.20

9.12

184.20
29.56
17.54

2.91

0.58

15.69

316.95
50.86
30.18

5.01

<0.001

<0.001
<0.001
<0.001

<0.001

Table 48. Analysis of deviance for least puffer caught by trawl,
45-75 mm, September-November, 1983-1991 (Figure 2N) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

2

1
1
6

16

400

15.32

0.03
4.23
75.30

40.57

240.67

7.66

0.03
4.23
12.55

2.54

0.60

12.73

0.06
7.02
20.86

4.22

<0.001

>0.75
<0.005
<0.001

<0.001
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Table 49. Analysis of deviance for bighead searobin caught by
trawl, all sizes, January-December, 1983-1991 (Figure 2 O).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

l
1
6

88

1350

195.60

11.87
2.37
38.23

125.69

645.11

17.78

11.87
2.37
6.37

1.43

0.48

37.21

24.84
4.96
13.33

2.99

<0.001

<0.001
<0.05
<0.001

<0.001

Table 50. Analysis of deviance for white shrimp caught by trawl,
80-100 mm, July-April, 1982-1990, using Area as a categorical
variable (Figure 10A).

Source of Variation D.F.

Area

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

1

9

1
1
5

63

1444

Deviance

144.80

433.30

149.40
1.50
83.80

382.10

1403.0

M.D.

144.80

48.14

149.40
1.50
16.76

6.07

0.97

F

149.28

49.63

154.02
1.55
17.28

6.26

P

<0.001

<0.001

<0.001
>0.01
<0.001

<0.001
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Table 51. Analysis of deviance for white shrimp caught by trawl,
110-130 mm, April-May, 1982-1990, using Area as a categorical
variable (Figure 10B) .

Source of Variation

Area

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

1

1

1
1
6

12

342

Deviance

75.14

10.38

109.68
0.00
21.77

28.81

300.00

M.D.

75.14

10.38

109.68
0.00
3.63

2.40

0.88

F

85.39

11.80

124.64
0.00
4.12

2.73

P

<0.001

<0.001

<0.001
>0.75
<0.001

<0.001

Table 52. Analysis of deviance for white shrimp caught by trawl,
110-130 mm, August-November, 1982-1990, using Area as a categorical
variable (Figure 10C).

Source of Variation

Area

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

1

3

1
1
6

24

684

Deviance

13.23

33.58

117.11
38.95
52.81

143.01

659.83

M.D.

13.23

11.19

117.11
38.95
8.80

5.96

0.96

F

13.78

11.66

121.99
40.57
9.17

6.21

P

<0.001

<0.001

<0.001
<0.001
<0.001

<0.001
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Table 53. Analysis of deviance for white shrimp caught by trawl,
110-130 mm, August to November, 1963-1968, from TPWD/NMFS data
(Figure 11A).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected Error

D.F.

3

1
1
3

15

96

Deviance

14.61

0.33
47.91
11.44

79.99

208.74

M.D.

4.87

0.33
47.91
3.81

5.33

2.17

F

2.24

0.15
22.04
1.75

2.45

P

>0.05

>0.50
<0.001
>0.10

<0.01

Table 54. Analysis of deviance for white shrimp caught by trawl,
110-130 mm, August to November, 1972-1980, from TPWD/NMFS data
(Figure 11A).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected Error

D.F.

3

1
1
6

23

197

Deviance

6.81

10.13
0.00
28.91

69.61

271.01

M.D.

2.27

10.13
0.00
4.82

3.03

1.38

F

1.65

7.36
0.00
3.50

2.20

P

>0.10

<0.01
>0.75
<0.005

<0.001

Analysis of deviance for white shrimp caught by trawl, 110-130 mm,
August-November, 1982-1990 (Figure 11B): see Table 34.

Analysis of deviance for white shrimp caught by bag seine, 35-55
mm, June-December, 1977-1990 (Figure 12A): see Table 8.
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Table 55. Analysis of deviance for white shrimp caught by trawl,
80-100 mm, July-April, 1982-1990 (Figure 12B) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

9

1
l
5

63

1444

415.30

137.70
0.66
76.00

375.60

1390.40

46.14

137.70
0.66
15.20

5.96

0.96

47.92

143.01
0.71
15.79

6.19

<0.001

<0.001
>0.50
<0.001

<0.001

Analysis of deviance for Atlantic croaker caught by trawl, 115-
135 mm, March-September, 1983-1990 (Figure 14A): see Table 29.

Table 56. Analysis of deviance for pinfish caught by trawl, 110-
140 mm, September-November, 1983-1990 (Figure 14B).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

2

1
1
5

14

400

0.32

13.88
3.08
20.84

53.93

231.23

0.16

13.88
3.08
4.17

3.85

0.58

0.28

24.01
5.33
7.21

6.66

>0.75

<0.001
<0.025
<0.001

<0.001
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Table 57. Analysis of deviance for black drum caught by
300-400 mm, fall season. 1975-1989 (Figure 14C).
CPUE=CATCH/(GTIME/14)* .

Source of Variation D.F. Deviance M.D. F

YEAR
Linear
Quadratic
Other

1
1
12

24.73
2.85
90.13

24.73
2.85
7.51

21.50
2.48
6.53

Error 445 511.74 1.15

Table 58. Analysis of deviance table for southern floun
by gill net, >250 mm, fall season, 1975-1989 (Figure 14
CPUE = catch/set.

Source of variation D.F. Deviance M.D. F

YEAR
Linear
Quadratic
Other

1
1

12

0.01
0.00
33.11

0.01
0.00
2.76

0.01
0.00
2.49

Error 472 524.46 1.11

Table 59. Analysis of deviance for red drum caught by
375-500 mm, spring season, 1977-1990 (Figure 14E).
CPUE=CATCH/(GTIME/12.5) .

Source of Variation D.F. Deviance M.D. F

YEAR
Linear
Quadratic
Other

1
1
11

1.27
15.94
43.72

1.27
15.94
3.97

0.94
11.81
2.94

Error 450 607.57 1.35
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Table 60. Analysis of deviance for red drum caught by gill net,
501-700 mm, spring season, 1977-1990 (Figure 14F). CPUE=catch/set.

Source of Variation

GTIME

YEAR
Linear
Quadratic
Other

GTIME X YEAR

Error

D.F.

1

1
1
11

13

425

Deviance

2.88

11.29
19.95
22.30

10.10

469.26

M.D.

2.88

11.29
19.95
2.03

0.78

1.10

F

2.62

10.26
18.14
1.84

0.71

P

>0.10

<0.005
<0.001
<0.05

>0.75

Table 61. Analysis of deviance for spotted seatrout caught by gill
net, 350-450 mm, spring season, 1977-1990 (Figure 14G).
CPUE = catch/set.

Source of variation

GTIME

Year
Linear
Quadratic
Other

GTIME X YEAR

Error

D.F.

1

1
1
11

13

425

Deviance

0.00

27.20
6.08
10.97

18.14

523.40

M.D.

0.00

27.20
6.08
1.00

1.40

1.23

F

0.00

22.11
4.94
0.81

1.13

P

>0.75

<0.001
<0.05
>0.50

>0.25

Table 62. Analysis of deviance for spotted seatrout caught by gill
net, >450 nan, spring season, 1977-1990 (Figure 14H) .
CPUE = catch/set.

Source of Variation

GTIME

Year
Linear
Quadratic
Other

GTIME X YEAR

Error

D.F.

1

1
1
11

13

425

Deviance

2.28

5.21
5.06
16.47

11.77

406.27

M.D.

2.28

5.21
5.06
1.50

0.91

0.96

F

2.38

5.43
5.27
1.56

0.94

P

>0.10

<0.025
<0.025
0.10

>0.50
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Table 63. Analysis of deviance for blue crab caught by bag seine,
<=25 mm TW, January-December, 1978-1991 (Figure ISA) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
11

141

1356

168.5

21.23
8.50
69.00

441.90

1463.70

15.07

21.23
8.50
6.27

3.13

1.08

13.96

19.67
7.88
5.81

2.90

<0.001

<0.001
0.005
<0.001

<0.001

Table 64. Analysis of deviance for blue crab caught by bag seine,
26-45 mm, January-December, 1978-1991 (Figure 15B).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
10

141

1338

228.9

21.74
2.66
30.10

361.10

1297.60

20.81

21.74
2.66
2.74

2.56

0.97

21.46

22.47
2.74
2.82

2.64

<0.001

<0.001
0.10
0.001

<0.001

Table 65. Analysis of deviance for blue crab caught by bag seine,
46-65 mm, January-December, 1978-1991 (Figure 15C).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
11

141

1107

218.50

11.93
0.32
41.00

349.00

922.10

19.86

11.93
0.32
3.73

2.47

0.83

23.85

14.32
0.39
4.47

2.97

<0.001

<0.001
>0.50
<0.001

<0.001
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Table 66. Analysis of deviance for blue crab caught by bag seine,
66-85 mm, January-December, 1978-1991 (Figure 15D).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

Table 67. Analysis of

D.F.

11

1
1
10

141

1108

Deviance

155.90

1.17
0.10
47.80

322.40

852.90

deviance for blue
86-105 mm, January-December,

Source of Variation

Month
YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

Table 68. Analysis of

D.F.

11

1
1
11

141

1068

M.D. F

14.17 18.41

1.17 1.51
0.10 0.14
4.34 5.64

2.28 2.97

0.77

crab caught by

P

<0.001

>0.10
>0.50
<0.001

<0.001

bag seine,
1978-1991 (Figure 15E) .

Deviance

134.50

1.22
0.01
51.30

310.60

792.80

deviance for blue
106-125 mm, January-December,

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

11

1
1
10

141

816

1978-1991

Deviance

176.10

4.71
1.89
18.40

273.51

616.49

M.D. F

12.23 16.47

1.22 1.65
0.01 0.02
4.66 6.28

2.20 2.96

0.74

crab caught by
(Figure 15F) .

M.D. F

16.009 21.19

4.71 6.23
1.89 2.51
1.67 2.21

2.94 2.57

0.76

P

<0.001

>0.10
>0.75
<0.001

<0.001

bag seine,

P

<0.001

<0.025
>0.10
0.01

<0.001
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Table 69. Analysis of deviance for blue crab caught by bag seine,
>125 mm, January-December, 1978-1991 (Figure 15G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
11

141

703

154.63

9.43
1.08
17.55

218.01

470.27

14.06

9.43
1.08
1.60

1.55

0.669

21.01

14.10
1.61
2.39

2.31

<.001

<0.001
>0.10
<0.01

<0.001

Table 70. Analysis of deviance for blue crab caught by trawl, <=45
mm, January-December, 1982-1991 (Figure 16A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

2172

345.10

52.31
21.16
130.60

429.00

1692.40

31.37

52.31
21.16
18.66

4.33

0.78

40.26

67.13
27.15
23.94

5.56

<0.001

<0.001
<0.001
<0.001

<0.001

Table 71. Analysis of deviance for blue crab caught by trawl, 46-
65 mm, January-December, 1982-1991 (Figure 16B).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

2224

918.20

24.81
16.51
80.01

316.20

1784.30

83.47

24.81
16.51
11.43

3.19

0.80

104.04

35.41
20.58
14.25

3.98

<0.001

<0.001
<0.001
<0.001

<0.001
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Table 72. Analysis of deviance for blue crab caught by trawl, 66-
85 mm, January-December, 1982-1991 (Figure 16C) .

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

11

1
1
7

99

1996

Deviance

1108.60

25.09
0.99
99.30

321.00

1481.90

M.D.

100.78

25.09
0.99
14.19

3.24

.74

F

135.74

33.80
1.33
19.10

4.37

P

<0.001

<0.001
0.25
<0.001

<0.001

Table 73. Analysis of deviance for blue crab caught by trawl, 86-
105 mm, January-December, 1982-1991 (Figure 16D).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

1711

755.10

19.45
0.02
83.40

326.60

1184.50

68.65

19.45
0.02
11.91

3.30

.69

99.15

28.09
0.03
17.21

4.76

<0.001

<0.001
>0.75
<0.001

<0.001

Table 74. Analysis of deviance for blue crab caught by trawl, 106-
125 mm, January-December, 1982-1991 (Figure 16E).

Source of Variation O.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

1901

456.50

27.77
2.97
48.70

230.20

1237.10

41.50

27.77
2.97
6.96

2.32

0.65

63.77

42.67
4.56
10.69

3.57

<0.001

<0.001
<0.05
<0.001

<0.001
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Table 75. Analysis of deviance for blue crab caught by trawl, 126-
145 mm, January-December, 1982-1991 (Figure 16F).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

11

1
1
7

99

1653

Deviance

433.40

71.55
9.80
38.50

225.70

1033.40

M.D.

39.40

71.55
9.80
5.50

2.28

0.62

F

63.02

114.45
15.68
8.80

3.65

P

<0.001

<0.001
<0.001
<0.001

<0.001

Table 76. Analysis of deviance for blue crab caught by trawl, >145
mm, January-December, 1982-1991 (Figure 16G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

l
l
7

99

2129

204.10

132.70
4.23
22.10

208.00

1416.00

18.55

132.70
4.23
3.16

2.10

.66

27.90

199.52
6.37
4.75

3.16

<0.001

<0.001
<0.025
<0.001

<0.001

Table 77. Analysis of deviance for blue crab caught by trawl, 25-
-45 mm, January-December, 1982-1991, in the upper zone of the
Galveston Estuary (Figure 17A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

899

237.40

57.67
34.51
87.80

461.50

918.30

21.58

57.67
34.51
12.54

4.66

1.02

21.13

56.46
33.78
12.28

4.56

<0.001

<0.001
<0.001
<0.001

<0.001
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Table 78. Analysis of deviance for blue crab caught by trawl, 25-
-45 mm, January-December, 1982-1991, in the lower zone of the
Galveston Estuary (Figure 17A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

774

213.30

16.50
3.20
73.40

280.80

878.50

19.39

16.50
3.20
10.48

2.84

1.13

17.08

14.53
2.82
9.24

2.50

<0.001

<0.001
>0.05
<0.001

<0.001

Table 79. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-1991, in the upper zone of the
Galveston Estuary (Figure 17B).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

962

780.30

29.54
24.08
62.40

340.00

954.40

70.94

29.54
24.08
8.91

3.43

0.992

71.50

29.77
24.27
8.98

3.46

<0.001

<0.001
<0.001
<0.001

<0.001

Table 80. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-1991, in the lower zone of the
Galveston Estuary (Figure 17B) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

864

595.60

19.98
0.01
73.50

242.80

878.50

54.14

19.98
0.01
10.50

2.45

1.02

53.25

19.65
0.01
10.33

2.41

<0.001

<0.001
>0.75
<0.001

<0.001
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Table 81. Analysis of deviance for blue crab caught by trawl, 120-
140 mm, January-December, 1982-1991, in the upper zone of the
Galveston Estuary (Figure 17C).

Source of Variation O.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

692

282.85

58.04
19.93
37.43

246.75

654.40

25.71

58.04
19.93
5.35

2.49

0.95

27.20

61.37
21.07
5.65

2.63

<0.001

<0.001
<0.001
<0.001

<0.001

Table 82. Analysis of deviance for blue crab caught by trawl, 120-
140 mm, January-December, 1982-1991, in the lower zone of the
Galveston Estuary (Figure 17C).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
7

99

684

299.54

19.02
0.09
28.23

153.38

421.66

27.23

19.02
0.09
4.03

1.55

0.62

44.17

30.85
0.14
6.54

2.51

<0.001

<0.001
>0.50
<0.001

<0.001

Table 83. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1986-1990, in Sabine Lake (Figure 21A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
l
2

44

643

87.40

24.72
1.35
1.11

117.65

420.45

7.95

24.72
1.35
0.55

2.67

.65

12.22

38.03
2.08
0.85

2.67

<0.001

<0.001
>0.10
>0.25

<0.001
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Table 84. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1978-1990, in Matagorda Bay (Figure
21B).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
10

131

1292

218.8

7.50
4.30
40.60

400.60

907.10

19.89

7.50
4.30
4.06

3.06

0.70

28.42

10.71
6.14
5.80

4.37

<0.001

<0.005
<0.025
<0.001

<0.001

Table 85. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1983-1990, in East Matagorda Bay
(Figure 21C).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
5

76

953

140.50

49.10
15.0
23.40

242.00

771.60

12.77

49.10
15.0
4.68

3.18

0.81

15.77

60.62
18.52
5.78

3.93

<0.001

<0.001
<0.001
<0.001

<0.001

Table 86. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1978-1990, in San Antonio Bay (Figure
21D).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

l
l
10

131

1299

203.80

0.80
9.70
39.70

385.60

987.10

18.53

0.80
9.70
3.97

2.94

0.76

24.38

1.05
12.76
5.22

3.87

<0.001

>0.25
<0.001
<0.001

<0.001
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Table 87. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1978-1990, in Aransas Bay (Figure 21E) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
10

131

1308

112.80

44.10
1.30

142.10

410.90

1214.40

10.25

44.10
1.30
14.21

3.14

0.93

11.03

47.42
1.40
15.28

3.37

<0.001

<0.001
>0.25
<0.001

<0.001

Table 88. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1978-1990, in Corpus Christi Bay
(Figure 21F).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
10

131

1311

194.10

3.80
7.50
99.0

446.10

1260.40

17.65

3.80
7.50
9.90

3.41

0.96

18.38

3.96
7.81
10.31

3.55

<0.001

<0.05
<0.01
<0.01

<0.001

Table 89. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1978-1990, in the Upper Laguna Madre
(Figure 21G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
10

131

1281

291.20

63.50
2.40
49.40

324.10

824.70

26.47

63.50
2.40
4.94

2.47

0.64

41.36

99.22
3.75
7.72

99.22

<0.001

<0.001
>0.05
<0.001

<0.001
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Table 90. Analysis of deviance for blue crab caught by bag seine,
25-45 mm, January-December, 1978-1990, in the Lower Laguna Madre
(Figure 21H).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
10

131

1312

255.20

59.00
16.90
151.30

451.90

1239.40

23.20

59.00
16.90
15.31

3.45

0.94

24.68

62.77
17.98
16.10

3.67

<0.001

<0.001
<0.001
<0.001

<0.001

Table 91. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1987-1991, in Sabine Lake (Figure 22A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
2

44

983

17.68

56.93
0.30
62.46

120.81

444.01

1.61

56.93
0.30
31.23

2.75

0.45

3.58

126.51
0.67
69.40

6.10

>0.05

<0.001
>0.25
<0.001

<0.001

Table 92. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1987-91, in Sabine Lake (Figure 22A).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
2

44

985

34.57

0.00
2.20
2.54

64.04

138.68

3.14

0.00
2.20
1.27

1.46

0.14

22.45

0.00
15.71
9.07

10.40

<0.001

>0.75
<0.001
<0.001

<0.001
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Table 93. Analysis of deviance for blue crab caught by trawl, 120-
140 mm, January-December, 1987-1991, in Sabine Lake (Figure 22A) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
2

44

1007

57.93

0.01
0.31
15.25

111.02

494.48

5.27

0.01
0.31
7.63

2.52

0.49

10.75

0.02
0.63
15.56

5.15

<0.001

>0.75
>0.25
<0.001

<0.001

Table 94. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1982-1990, in Matagorda Bay (Figure 22B) ,

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

84

1942

173.49

0.66
21.84
16.36

255.71

655.80

15.77

0.66
21.84
2.73

3.04

0.34

46.39

1.94
64.24
8.02

8.95

<0.001

>0.10
<0.001
<0.001

<0.001

Table 95. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-90, in Matagorda Bay (Figure 22B).

Source of Variation D.F. Deviance M.D. F P

Month 11 266.00 24.18 56.24 <0.001

YEAR
Linear 1 6.50 6.50 15.12 <0.001
Quadratic 1 38.60 38.60 89.77 <0.001
Other 6 44.20 7.37 17.13 <0.001

Month x Year 84 237.40 2.83 6.57 <0.001

Corrected error 1949 839.00 0.43

124



Table 96. Analysis of deviance for blue crab caught by trawl, 120-
140 mm, January-December, 1982-1990, in Matagorda Bay (Figure 22B) ,

Source of Variation D.F. Deviance N.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

84

1938

374.18

1.00
9.16
33.01

124.72

685.7

34.02

1.00
9.16
5.50

1.48

0.35

97.19

2.86
26.17
15.72

4.24

<0.001

>0.05
<0.001
<0.001

<0.001

Table 97. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1982-1990, in San Antonio Bay (Figure
22C) .

Source of Variation D.F. Deviance N.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

88

2043

515.40

195.40
6.80
74.50

257.80

1355.40

46.85

195.40
6.80
12.42

2.93

0.66

70.99

296.06
10.30
18.81

4.44

<0.001

<0.001
<0.005
<0.001

<0.001

Table 98. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-90, in San Antonio Bay (Figure 22C),

Source of Variation D.F. Deviance M . D . F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

88

2049

663.60

121.40
8.90

102.90

250.80

1700.60

60.33

121.40
8.90
17.15

2.85

0.83

72.68

146.2
10.72
20.66

3.43

<0.001

<0.001
<0.005
<0.001

<0.001
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Table 99. Analysis of deviance for blue crab caught by trawl, 120-
140 mm, January-December, 1982-1990, in San Antonio Bay (Figure
22C) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11 329.70

1 84.40
1 12.60
6 128.40

88 185.90

2043 1318.5

29.97 46.11 <0.001

84.40 129.85 <0 .001
12.60 19.38 <0.001
21.40 32.92 <0.001

2.11 3.25 <0.001

0.65

Table 100. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1982-1990, in Aransas Bay (Figure 22D).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

88

2048

739.10

1.80
0.60

149.10

426.30

1440.80

67.19

1.80
0.60
24.85

4.84

0.70

95.99

2.57
0.86
35.50

6.92

<0.001

<0.10
>0.25
<0.001

<0.001

Table 101. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-90, in Aransas Bay (Figure 22D).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

88

2049

859.40

3.60
6.60

129.90

393.90

1681.4

78.13

3.60
6.60
21.65

4.48

0.82

95.28

4.39
8.05
26.40

5.46

<0.001

<0.05
<0.005
<0.001

<0.001
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Table 102. Analysis of deviance for blue crab caught by trawl,
120-140 mm, January-December, 1982-1990, in Aransas Bay (Figure
22D) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

88

2036

318.4

2.70
8.10
40.20

287.50

1225.90

28.95

2.70
8.10
6.70

3.27

0.60

48.24

4.50
13.50
11.17

5.45

<0.001

<0.05
<0.001
<0.001

<0.001

Table 103. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1982-1990, in Corpus Christi Bay (Figure
22E) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

84

2282

239.63

0.58
6.90
50.52

190.17

670.2

21.78

0.58
6.90
8.42

2.26

0.29

75.12

2.00
23.79
29.03

7.81

<0.001

>0.10
<0.001
<0.001

<0.001

Table 104. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-90, in Corpus Christi Bay (Figure
22E) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

84

2278

570.10

2.20
0.10

128.50

195.70

831.70

51.83

2.20
0.10
21.42

2.33

0.37

140.07

6.95
0.27
57.88

6.30

<0.001

<0.025
>0.50
<0.001

<0.001
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Table 105. Analysis of deviance for blue crab caught by trawl,
120-140 mm, January-December, 1982-1990, in Corpus Christi Bay
(Figure 22E).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

11

1
1
6

84

2291

Deviance

588.40

0.30
0.90
84.80

204.20

1033.10

M.D.

53.49

0.30
0.90
14.15

2.43

0.45

F

118.87

0.67
2.00
31.44

5.40

P

<0.001

>0.25
>0.10
<0.001

<0.001

Table 106. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1982-1990, in the Upper Laguna Madre
(Figure 22F).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

l
1
6

84

861

53.40

1.04
0.52
14.06

85.92

154.34

4.85

1.04
0.52
2.34

1.02

0.18

26.97

5.78
2.89
13.02

5.98

<0.001

<0.025
>0.50
<0.001

0.001

Table 107. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-90, in the Upper Laguna Madre (Figure
22F) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

11

1
1
6

185.72

9.27
12.20
40.60

16.88

9.27
12.20
6.77

43.29

23.77
31.28
17.35

<0.001

<0.001
<0.001
<0.001

Month X Year 84 148.93 1.77 4.55 <0.001

Corrected error 884 345.35 0.39
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Table 108. Analysis of deviance for blue crab caught by trawl,
120-140 mm, January-December, 1982-1990, in the Upper Laguna Madre
(Figure 22F).

Source of Variation

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

D.F.

11

1
1
6

84

899

Deviance

122.47

20.14
19.07
41.82

174.84

456.79

M.D.

11.13

20.14
19.07
6.97

2.08

0.51

F

21.83

39.49
37.39
13.67

4.08

P

<0.001

<0.001
<0.001
<0.001

<0.001

Table 109. Analysis of deviance for blue crab caught by trawl, 25-
45 mm, January-December, 1982-1990, in the Lower Laguna Madre
(Figure 22G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

84

890

123.29

3.98
0.17
7.87

244.19

392.49

11.21

3.98
0.17
1.31

2.91

0.44

25.47

9.05
0.39
2.98

6.61

<0.001

<0.005
>0.50
<0.01

0.001

Table 110. Analysis of deviance for blue crab caught by trawl, 50-
70 mm, January-December, 1982-90, in the Lower Laguna Madre (Figure
22G) .

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

11

1
1
6

623.70

0.36
2.29
92.17

56.70

0.36
2.29
15.36

70.00

0.44
2.83
18.97

<0.001

<0.001
>0.05
<0.001

Month x Year 84 150.20 1.79 2.21 <0.001

Corrected error 911 737.10 0.81
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Table 111. Analysis of deviance for blue crab caught by trawl,
120-140 mm, January-December, 1982-1990, in the Lover Laguna Madre
(Figure 22G).

Source of Variation D.F. Deviance M.D. F P

Month

YEAR
Linear
Quadratic
Other

Month x Year

Corrected error

11

1
1
6

84

920

223.87

16.31
0
86.79

153.53

691.70

20.35

16.31
0
14.47

1.83

0.75

27.14

21.75
0
19.29

2.44

<0.001

<0.001
>0.75
<0.001

<0.001

Table 112. Analysis of variance table for snowy egrets (Figure
25). TCWS data. From Slack et al. (1992).

Total Birds

Model

Year

Birds/Colony

Model

Year

r2 df

0.28 1

1

0.02 1

1

F P

6.33 0.

6.33 0.

11.83 <0.

11.83 <0.

Parameter
Estimate

023

023 -57.91

001

001 -3.91
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Table 113. Analysis of variance table for black skimmers (Figure
26). TCWS data. From Slack et al. (1992).

r2

Total Birds

Model 0.27

Year

Birds/Colony

Model 0.07

Year

Year2

df

1

1

1

1

1

F

5.98

5.98

18.77

7.78

6.95

P

0.026

0.026

<0.001

0.006

0.009

Parameter
Estimate

-95.08

-120.90

0.70

Table 114. Analysis of variance table for tricolored herons
(Figure 27). TCWS data. From Slack et al. (1992).

r2

Total Birds

Model 0.27

Year

Number of Colonies

Model 0.44

Year

Birds/Colony

Model 0.03

Year

Year2

df

1

1

1

1

2

1

1

F

5.83

5.83

12.46

12.46

8.53

5.08

4.65

P

0.028

0.028

0.003

0.003

<0.001

0.025

0.031

Parameter
Estimate

-87.81

0.45

-143.13

0.83
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Table 115. Analysis of variance table for roseate spoonbills
(Figure 28). TCWS data. From Slack et al. (1992).

Total Birds

Model

Year

Birds/Colony

Model

Year

r2

0.30

0.02

df

1

1

1

1

F

6.77

6.77

9.51

9.51

P

0.019

0.019

0.002

0.002

Parameter
Estimate

-28.51

-2.25

Table 116. Analysis of variance table for great egrets (Figure
29). TCWS data. From Slack et al. (1992).

Number of Colonies

Model

Year

Year2

Year3

Birds/Colony

Model

Year

r2

3

0.44

O.O1

df

3

1

1

1

1

1

F

3.65

6.47

6.31

6.15

4.23

4.23

P

0.039

0.023

0.025

0.027

0.040

0.040

Parameter
Estimate

190.18

-2.31

0.01

-2.35
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Table 117. Analysis of variance table for olivaceous cormorants
(Figure 30). TCWS data. From Slack et al. (1992).

r2

Total Birds

Model 0.27

Year

Number of Colonies

Model 0.59

Year

df

1

1

1

1

F P

5.87 0.

5.87 0.

23.39 <0.

23.39 <0.

Parameter
Estimate

028

028 40.24

001

001 0.37

Table 118. Analysis of variance table for mottled ducks (Figure
31). Mid-winter Waterfowl Transects data. From Slack et al.
(1992).

r2

Model 0.74

Transect

Year

Year*Transect

df

3

2

1

2

F

13.15

14.88

9.68

5.44

Parameter
P Estimate

<0.001

<0.001

0.008 -5.11

0.021

Table 119. Analysis of variance table for northern pintails
(Figure 32). Mid-winter Waterfowl Transects data. From Slack et
al. (1992).

r2

Model (log) 0.98

Transect

Year

Year*Transect

df

3

2

1

2

F

189.77

280.01

9.30

7.93

Parameter
P Estimate

<0.001

<0.001

0.008 -0.26

0.006
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Table 120. Analysis of variance table for blue-winged teal (Figure
33). Mid-winter Waterfowl Transects data. From slack et al.
(1992).

r2

Model (log) 0.69

Transect

Year

Year2

Year*Transect

df

4

2

1

1

2

F

7.23

11.43

6.07

6.07

0.00

Parameter
P Estimate

0.003

0.001

0.029

0.029

0.995

49.89

-0.28
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