

Bibliography of Methods for Marine and Estuarine Monitoring

BIBLIOGRAPHY OF METHODS FOR MARINE AND ESTUARINE MONITORING

April 1995

Ocean and Coastal Protection Division Office of Wetlands, Oceans, and Watersheds Office of Water U. S. Environmental Protection Agency Washington, D.C.

	•		,
			•

Acknowledgements

The preparation of this document was supported by Marian Mlay, Director of the Oceans and Coastal Protection Division of the U.S. Environmental Protection Agency's Office of Wetlands, Oceans and Watersheds. The Work Assignment Manager was Joseph Hall II. The contributions of Steve Glomb toward the completion of the bibliography were invaluable. The references were researched and compiled by Kim Brown, the document was prepared by Patti Heath, and the poster was designed by Robert Wurgler under the supervision of Tom Grieb of Tetra Tech.

EPA would like to thank the many reviewers who offered valuable comments and recommended further documents for inclusion in the bibliography. The following people were key reviewers of a draft of the bibliography (an asterisk denotes those reviewers from whom comments were received):

Elizabeth Arar, USEPA, EMSL-Cincinnati John Bourbon*, USEPA, Region II-ESD. Herbert J. Brass, USEPA, EMSL-Cincinnati Martin Brossman, USEPA, AWPD Wade Bryant, USFWS Bo Crum, USEPA, Region IV Elizabeth Fellows, USEPA, AWPD Terry Fleming*, USEPA, Region IX Virginia Fox-Norse*, USEPA, OWOW, OCPD Jack Gakstatter, USEPA, Region X Holly Greening, Tampa Bay NEP Rainer Hoenicke*, San Francisco Estuary Institute Norbert Jaworski, Director, USEPA, ERL-Narragansett Fred Kopfler, USEPA, Gulf of Mexico Program Michael Kravitz*, USEPA, OST John Lishman, USEPA, OWOW, OCPD George Loeb, USEPA, OWOW, OCPD Bill Matuszeski, Director, USEPA, CBP Barbara Metzger*, USEPA, Region II-ESD

George Morrison*, USEPA, ERL-Narragansett Paul Pan*, USEPA, OWOW, OCPD Steve Pardieck, USEPA, Region IX John Paul, USEPA, EMAP David A. Rickert, USGS Andrew Robertson, NOAA Brian Ross, USEPA, Region IX Jerry Schubel, Long Island Sound NEP Russell W. Sherer, South Carolina, DHEC Joseph Slayton*, USEPA, Region III Elizabeth Southerland, USEPA, OST Ann B. Strong, Corps of Engineers Kevin Summers, USEPA, ERL-Gulf Breeze Dennis Suszkowski, Hudson River Foundation William A. Telliard, USEPA, OST Catherine Tyrrell, Santa Monica NEP Orteria Villa, Director, USEPA, Central Region Lab Nancy Wentworth, USEPA, ORD/QAMS

Technical support for the development of this document was provided by Tetra Tech, Inc. under EPA Contract No. 68-C1-0008.

,	_			·

Executive Summary

Purpose

This document is designed to give coastal managers a single reference for the broad spectrum of sampling and analytical methods that are in use today. Because of the complexity of estuarine and marine environments and associated issues, no single monitoring methods manual can be applied to all situations. This document, therefore, provides the coastal manager with a starting point for identifying and selecting appropriate methods for use in the National Estuary Program, Ocean Dumping Program and other coastal monitoring programs.

Document Elements

This document and the accompanying methods matrix provide an annotated bibliography that lists and describes references on sampling and analytical methods and related topics, including: monitoring plans, quality assurance, data interpretation and data management. To provide readers with the information needed to decide on the suitability of a reference for their needs, five elements have been provided for each reference:

- 1. Bibliographic Reference
- 2. Media for which the methods are appropriate
- 3. Keywords
- 4. Abstract
- 5. The Table of Contents from the reference

Selection Criteria

One hundred references were selected from numerous federal, state, and local organizations for inclusion in this document. Criteria for inclusion were: a focus on marine and estuarine environments, current use, and acceptance by professionals for use in saline environments.

Keyword Index

In addition, an index of all keywords and associated terms is included at the end of the document as an alternative technique for searching for references covering specific subject areas. A bibliography of all references, arranged by author and date, is also provided.

Summary Chart

The accompanying chart provides the user with a cross-reference of monitoring parameters to reference documents and identifies the applicable media (i.e., water column, sediment, or biota). This format affords the user a simple lookup table to quickly identify references that address the parameters and media of interest. In addition, a source for obtaining a copy of the reference is given for each entry in the bibliography.

Table of Contents

ACKNOWLEDGEMENTS	iii
EXECUTIVE SUMMARY	v
INTRODUCTION	1
CROSS-REFERENCE MATRIX	9
CATALOG OF REFERENCES	
REFERENCE LIST	423
INDEX	435

	1	
		*
	•	
	•	
•		

·			•		
	•				
	·				
				a.	
			,		

Introduction

PURPOSE

This document provides a comprehensive reference list of available sampling and analytical methods pertinent to the monitoring of marine and estuarine environments. The listed references contain specific methods, standard practices, and established protocols for field sampling, laboratory analysis, and quality assurance/quality control (QA/QC) procedures appropriate for the environmental monitoring requirements of National Estuary Programs (NEPs). The references have been collected from a variety of sources, including existing NEPs, other regional monitoring efforts, local monitoring studies, and federal research laboratories. The purpose of this document is to provide an information resource for NEP committees and managers that can assist them in selecting field and laboratory methods for monitoring the parameters that are the most appropriate indicators of environmental quality within their program.

Several alternative methods exist for many of the field sampling, laboratory analyses, data analyses, and QA/QC procedures required within a NEP monitoring effort. The aim of this document is to present in one place relevant references, in which alternative methods and practices for field collection procedures, laboratory protocols, and data reporting and analyses requirements are outlined. It is not the aim of this document to compare, rate, or recommend different monitoring methodologies. This document is designed to be a single source of published information for NEP managers who have the responsibility for designing the field and laboratory components of the regional monitoring program, once monitoring objectives have been established and the environmental parameters to be monitored have been identified.

SCOPE

References have been limited to those manuals, guidance documents, standard operating procedures and protocols that specifically describe methodologies for sampling, analytical, QA/QC, and data analysis procedures. Emphasis has been placed on recently developed analytical methods and standards and protocols used by existing NEP and national monitoring programs such as the Puget Sound Estuary Program, the San Francisco Estuary Project, the Galveston Bay Estuary Program, EPA's 301(h) and 403 monitoring programs, EPA's Ecosystem Monitoring and Assessment Program, and NOAA's Status and Trends Program. Comparative discussions of methodolo-

gies, monitoring plans, or general guidance documents are not included unless they contain detailed examples of specific monitoring methods.

Approximately 200 documents were identified and collected for tentative inclusion in this bibliography. Using the criteria described above, a final selection of 100 references were chosen from the collected documents. The majority of references are EPA publications; others are published by other federal and state agencies. A small number of consultants' reports, published books, and technical reports and standards are also included.

The collection of appropriate references included searches of available corporate libraries and technical publications, such as the American Society for Testing and Materials (ASTM) and the American Public Health Association (APHA). EPA resources were also searched extensively. The Center for Environmental Research Information on-line document catalog and the EPA library network Online System Library provided information on the majority of the published EPA reports. Other EPA offices were contacted directly for details on unpublished reports and reports in press. The EPA resources contacted included the:

Office of Research and Development,

Environmental Systems Monitoring Laboratory-Cincinnati

Environmental Systems Monitoring Laboratory-Duluth

Environmental Research Laboratory-Gulf Breeze

Environmental Research Laboratory-Narragansett

Environmental Research Laboratory-Newport

Office of Science and Technology

Office of Wetlands, Oceans, and Watersheds, Ocean and Coastal Protection Division

Other federal agencies contacted included the:

National Park Service

National Oceanic and Atmospheric Administration (NOAA) regional libraries

NOAA National Marine Fisheries Service, Northwest Center

NOAA Coastal Monitoring and Bioeffects Assessment Division

U.S Army Engineer Waterways Experiment Station

U.S. Army Corps of Engineers, San Francisco District

U.S. Geological Survey regional library

U.S. Food and Drug Administration National Shellfish Sanitation Branch.

State and local organizations contacted included the:

California State Water Resources Control Board
Chesapeake Bay Program
Galveston Bay Estuary Project
Maryland Department of the Environment
Puget Sound Estuary Program
San Francisco Estuary Institute
San Francisco Estuary Project
Southern California Coastal Water Resources Project
State of Maine Department of Environmental Protection
Texas Natural Resources Conservation Commission
Texas Parks and Wildlife Department
Washington State Department of Ecology.

Library catalogs were searched via on-line access to the University of California system and to Stanford University. These searches were directed towards journal articles and books.

FORMAT

This document is an annotated bibliography. This first section, the introduction, explains the organization of the document. The second section consists of a summary reference table or matrix. This cross-reference matrix is a concise display of the keywords for each reference. The keywords are grouped into logical divisions of physical parameters, chemical parameters, biological characterization, and related topics.

The third section, comprising the majority of the document, is the catalog of references. Each reference or entry is presented in standard format:

bibliographic information keywords abstract contact telephone number table of contents

The fourth section consists of a standard reference list, ordered by author and date. The last section is an index relating keywords and subject to appropriate entries in the bibliography, using reference numbers. Each entry has a unique reference number that is displayed at the top of each page of the catalog of references. The reference number is also used in the cross-reference matrix and reference list as a convenient means for the reader to find the bibliographic information pages of any document of interest.

BIBLIOGRAPHIC INFORMATION

The references are arranged alphabetically by author or publishing agency or organization. Where a reference has both named authors and a publishing agency, the agency is generally given precedence and the entry is arranged alphabetically according to the agency name. Although not necessarily a standard approach, this format allows immediate recognition of the document as being a product of a local, state, or federal organization. References published by the same agency are arranged chronologically, by year of publication.

The majority of the references are federal government agency reports. Where possible both the agency publication number and the National Technical Information Service (NTIS) accession number have been included for the reader's convenience when ordering documents. Some recent documents will be available from the office of the sponsoring agency, but in general, requesting documents from NTIS will be more successful.

KEYWORDS

A standard set of keywords were developed for this bibliography, based on the structure of the referenced methods manuals and protocols. Three major keywords or categories are used to denote the environmental media of interest:

WATER QUALITY
SEDIMENT QUALITY
BIOLOGICAL CHARACTERIZATION

Each reference contains at least one of these keywords, and many comprehensive documents contain methods addressing all three.

Keywords are further divided into environmental parameters and monitoring procedures. This division combines similar parameters under headings such as organic constituents, nutrients, and PCBs, and groups similar procedures, such as sampling, QA/QC, and bioaccumulation. These groupings are a logical combination of parameters that reflect the approach used in specific methods documents. The parameter and procedure keywords are shown in Table 1.

The majority of the secondary keywords can be associated with more than one major keyword or media category. For example, sampling is used as a keyword for methods describing water column sampling, sediment sampling, and biological sampling; nutrients is used as a keyword for references discussing nutrient analyses of water and of sediments, but GRAIN SIZE refers only to a measure of sediment quality, and CHLOROPHYLL refers only to methods to measure the abundance of phytoplankton, a biological characterization monitoring method.

TABLE 1 PARAMETER AND PROCEDURE KEYWORDS

PHYSICAL PARAMETERS

CURRENT & FLOW (Includes methods of current and tidal measurements and stream flow)

Dern (Methods of water depth measurements)

DISSOLVED OXYGEN (Methods applicable to water column and sediment pore water)

GRAIN SIZE (Sediments)

pH (Includes methods for water column and sediments, including eH)

SALINITY (Includes conductivity of the water column)

Total Solids (Includes total suspended solids, total dissolved solids, total volatile solids.

settleable solids, floating particulates)

TURBIDITY (Includes water column transmissivity, transparency, color)

TEMPERATURE (Water and sediment)

CHEMICAL PARAMETERS

INORGANICS (Includes arsenic, asbestos, cyanide, sulfides: water, sediment)

METALS (Dissolved, suspended, and total metals: water, sediment)

Organics (Includes halogenated aliphatic hydrocarbons, halogenated ethers, monocy-

clic aromatic hydrocarbons, nitrosamines, and others: water, sediment)

NUTRIENTS (Includes ammonia-Nitrogen, Kjeldahl-Nitrogen, nitrite and nitrate, total

nitrogen, dissolved nitrogen, organic nitrogen, orthophosphate, total phos-

phorus, dissolved phosphorus: water, sediment)

PAHs (Polycyclic aromatic hydrocarbons and phthalate esters: water,

sediment)

PCBs (Polychlorinated biphenyls: water, sediment)

PESTICIDES (Includes DDT and derivatives, dieldrin, heptachlor, chlordane, and other

priority pollutant pesticides: water, sediment)

Oxygen Demand [BOD], chemical oxygen demand [COD]:

water, sediment)

Organic Carbon [TOC]: water, sediment)
Organotins (Includes tributyltin and others: water, sediment)

RADIOACTIVITY (Water, sediment)

BIOLOGICAL PARAMETERS

BIOACCUMULATION (Biological characterization)
CHLOROPHYLL (Biological characterization)

PATHOGENIC ORGANISMS (Includes coliform and Enterococcus bacteria: water, sediment, biological

characterization)

POPULATION/COMMUNITY (Includes fish, macroinvertebrates, epibenthos, infauna, vegetation, habitat:

biological characterization)

Tissue Analysis (Water, sediment, biological characterization)
Toxicity/Bioassay (Water, sediment, biological characterization)

RELATED ISSUES

DATA ANALYSIS/MANAGEMENT
QA/QC
(Water, sediment, biological characterization)
(Water, sediment, biological characterization)
(Water, sediment, biological characterization)
VOLUNTEER MONITORING
(Water, sediment, biological characterization)

ABSTRACT

For each entry in the bibliography an abstract has been provided. The abstract is copied from the referenced document if available. If not, a brief description of the document is provided by either excerpting relevant paragraphs from the introductory material or by composing an abstract from a review of the document. The purpose, type of method(s), expected sensitivity and accuracy (if appropriate), general level of detail, and information on the format of the document are outlined. The origin of the abstract is noted at the end of the abstract as follows:

[copied from document] a reproduction of the abstract as it appears in the document

[extracted from document] a compilation of statements from the Executive Summary, Preface,

Introduction, statement of purpose, scope, etc.

[composed after review] an abstract was written after a review of the document.

CONTACT

A telephone number is supplied for all references that are published by public agencies. Copies of the document or current information on how to obtain copies are available by calling the number shown. In many cases, reader's technical queries can also be addressed.

TABLE OF CONTENTS

A table of contents is included in a standardized format for each reference. Chapter or section headings and two or three levels of sub-headings have been included. However, where numerous levels of sub-headings or repetitive headings occur in the reference, they have been abridged in this section. Titled appendices are included, but lists of tables and figures are not included. The tables of contents are presented in a standard format to provide an indication of the level of detail of the document.

CROSS REFERENCING MATRIX

To enhance the utility of this document, a matrix cross referencing keywords and titles is included. This matrix enables the reader to identify all documents pertaining to specific parameters or, alternatively, to determine quickly the range of methods addressed in any particular document.

To avoid repetition in the cross reference matrix and to enhance the brevity of the matrix, three letters are used to denote the media for which the method was designed: W for water quality, S for sediment quality, and B for biota or biological characterization. These correspond to the three major keywords in the bibliographic information at the beginning of each entry.

REFERENCE LIST

To further enhance ease of use for the reader, a reference list of all documents included in this bibliography is included. It contains standard reference information of:

author
year of publication
title
editor(s)
publisher or publishing institution
number of pages
report number
reference number

This reference list is sorted by author and year and can be cross-referenced to the annotated catalog listings by the reference number. This information is basically the same as that supplied at the beginning of each catalog entry; differing in that keywords, abstracts, and tables of contents are not included. The purpose of this reference list is to allow the reader to quickly search for a specific author and year, without the necessity of having to look through several pages per reference.

INDEX

An index to the catalog is included. Index entries include each of the keywords as well as the terms or monitoring and analytical parameters associated with the keywords. This includes specific physical and biological parameters and elements and compounds addressed in the references. The numbers listed with each index word are the reference numbers used to identify each document within the catalog. These reference numbers are repeated at the top of every page of each reference. This provides the reader with a convenient method to quickly locate a reference of interest, whether from the index or from the cross-reference matrix.

POSTER

A fold-out poster, suitable for wall display, is included in a pocket at the back of this document. The poster displays a complete version of the cross-reference matrix presented in the following section.

ı		

Reference No.: 001

APHA. 1970. Recommended Procedures for the Examination of Sea Water and Shellfish. 4th. ed. American Public Health Association, Inc. New York, NY.

Media in which methods can be used:

✓ Water

Sediment

✔ Biota

Keywords:

Water quality, biological characterization, sampling, pathogenic organisms, toxicity/bioassay, dissolved oxygen, salinity, temperature

Abstract

The procedures set forth in this document for the examination of sea water and shellfish are intended to describe methods applicable to water and sanitary surveys of shellfish-growing areas and to bacteriologic surveys of commercial shellfish operations. The tests included are for index organisms indicative of fecal contamination and, as such, indicate a possible danger of transmission of enteric diseases.

Bacteriologic examinations have served a definite purpose in sanitary surveys of shellfish-growing areas and have aided in the assessment of the sanitary quality of shellfish as harvested or marketed. The Fourth Edition places special emphasis on the application of the various tests for the determination of coliform and fecal coliform organisms. These tests, combined, have indicated pollution probabilities in the shellfish-growing areas and potentially dangerous contamination of the product during harvesting, washing, packing, and marketing.

Chemical and physical tests for such parameters as salinity and temperature accompany the bacteriologic test for shellfish and growing areas. Since naturally occurring biotoxins may be present at certain seasons in various geographic locations, the toxin assay methods have been inserted. [extracted from document]

Contact: (Out of print)

TABLE OF CONTENTS

1 APPARATUS AND MEDIA

Laboratory Apparatus

Washing and Sterilization

Materials

Preparation of Culture Media

Media

2 PROCEDURES FOR THE PHYSICAL AND CHEMICAL EXAMINATION OF ESTUARINE WATERS

Introduction

Collection of Samples

Physical and Chemical Examination

Bibliography

3 PROCEDURES FOR THE BACTERIOLOGIC EXAMINATION OF SEA WATER AND SHELLFISH

Examination of Sea Water

Examination of Shellfish

Bibliography

4 MEMBRANE FILTER METHODS FOR THE BACTERIOLOGIC EXAMINATION OF SEA WATER

Examination of Sea Water

Bibliography

5 BIOASSAY FOR SHELLFISH TOXINS

Bioassay for Paralytic Shellfish Poison

Method for the Bioassay of Gymnodinium breve Toxin(s) in Shellfish

Bibliography

APPENDIX DIFFERENTIATION OF COLIFORM AND FECAL COLIFORM ORGANISMS

Reference No.: 002

APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington, DC. American Public Health Association, American Water Works Association, Water Pollution Control Federation.

Media in which methods can be used:

✓ Water

Sediment

✓ Biota

Keywords:

Water quality, biological characterization, dissolved oxygen, pH, salinity, total solids, turbidity, nutrients, metals, organics, PAHs, PCBs, pesticides, inorganics,

toxicity/bioassays, pathogenic organisms

Abstract

The procedures described in these standards are intended for the examination and analysis of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground-water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. Certain methods are intended for use with sludges and sediments. An effort has been made to present methods that apply as generally as possible. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. The document is divided into the following major parts:

Part 1000 - Introduction

Part 2000 - Physical and Aggregate Properties

Part 3000 - Metals

Part 4000 - Inorganic Nonmetallic Constituents

Part 5000 - Aggregate Organic Constituents

Part 6000 - Individual Organic Compounds

Part 7000 - Radioactivity

Part 8000 - Toxicity

Part 9000 - Microbiological Examination

Part 10000 - Biological Examination

For each new edition, both the technical criteria for selection of methods and the formal procedures for their approval and inclusion are reviewed. The methods presented here are believed to be the best available and generally accepted procedures for the analysis of water, wastewaters, and related materials. They represent the recommendations of specialists, ratified by a large number of analysts and others of more general expertise, and as such are truly consensus standards, offering a valid and recognized basis for control and evaluation. Most of the methods included here have been endorsed by regulatory agencies.

All methods are classified as "standard" or "proposed". Methods with standard status have been studied extensively and accepted as applicable within the limits of sensitivity, precision, and accuracy given. Tentative methods are those still under investigation that have not yet been evaluated fully. They may be designated as standard in a later edition.

In order to maintain the current status of the standards new editions of the standards are published regularly at reasonably short intervals (approximately every four years for the last three editions). For this reason, the reader is advised to verify the latest edition available. [extracted from document]

Contact: (800) 926-7337

TABLE OF CONTENTS

PART 1000 INTRODUCTION

Introduction

Quality Assurance

Data Quality

Method Development and Evaluation

Expression of Results

Collection and Preservation of Samples

Laboratory Apparatus, Reagents, and Techniques

Reagent-Grade Water

Safety

PART 2000 PHYSICAL AND AGGREGATE PROPERTIES

Introduction

Quality Control

Appearance

Color

Turbidity

Odor

Taste

Flavor Profile Analysis (Proposed)

Acidity

Alkalinity

Calcium Carbonate Saturation (Proposed)

Hardness

Oxidant Demand/Requirement (Proposed)

Conductivity

Salinity

Floatables

Solids

Temperature

Oxidation-Reduction Potential (ORP) (Proposed)

Tests on Sludges

Anaerobic Sludge Digester Gas Analysis

Dissolved Gas Supersaturation

PART 3000 METALS

Introduction

Quality Control

Preliminary Treatment of Samples

Metals by Atomic Absorption Spectrometry

Metals by Cold-Vapor Atomic Absorption Spectrometry

Metals by Electrothermal Atomic Absorption Spectrometry

Metals by Hydride Generation/Atomic Absorption Spectrometry

Metals by Plasma Emission Spectroscopy

Metals by Anodic Stripping Voltammetry (Proposed)

- Al Alurninum
- Sb Antimony
- As Arsenic
- Ba Barium
- Be Beryllium
- Bi Bismuth
- Cd Cadmium
- Ca Calcium
- Cs Cesium
- Cr Chromium
- Co Cobalt
- Cu Copper
- Au Gold
- Ir Iridium
- Fe Iron
- Pb Lead
- Li Lithium
- Mg Magnesium
- Mn Manganese
- Hg Mercury
- Mo Molybdenum
- Ni Nickel
- Os Osmium
- Pd Palladium
- Pt Platinum
- K Potassium
- Re Rhenium
- Rh Rhodium
- Ru Ruthenium
- Se Selenium
- Ag Silver
- Na Sodium
- Sr Strontium
- TI Thallium
- Th Thorium
- Tn Tin
- Ti Titanium
- V Vanadium
- Zn Zinc

PART 4000 INORGANIC NONMETALLIC CONSTITUENTS

Introduction

Quality Control

Determination of Anions by Ion Chromatography

B - Boron

Br - Bromide

CO, - Carbon Dioxide

CN⁻ - Cyanide

CI - Chlorine (Residual)

CI - Chloride

CIO, - Chlorine Dioxide

F- - Fluoride

H+ - pH Value

I - lodine

I- - lodide

N - Nitrogen

NH₃ - Nitrogen (Ammonia)

NO; - Nitrogen (Nitrate)

NO: - Nitrogen (Nitrite)

N_{org} - Nitrogen (Organic)

O - Oxygen (Dissolved)

O₃ - Ozone (Residual)

P - Phosphorus

Si - Silica

S2- - Sulfide

S₃² - Sulfite

SO₄² - Sulfate

PART 5000 AGGREGATE ORGANIC CONSTITUENTS

Introduction

Quality Control

Biochemical Oxygen Demand (BOD)

Chemical Oxygen Demand (COD)

Total Organic Carbon (TOC)

Dissolved Organic Halogen

Aquatic Humic Substances (Proposed)

Oil and Grease

Phenols

Surfactants

Tannin and Lignin

Organic and Volatile Acids

Trihalomethane Formation (Proposed)

PART 6000 INDIVIDUAL ORGANIC COMPOUNDS

Introduction

Quality Assurance/Quality Control for Organic Compounds

Constituent Concentration by Gas Extraction

Volatile Organics

Methane

Volatile Aromatic Organics

Volatile Halocarbons

1,2-Dibromoethane (EDB and 1,2-Dibromo-3-Chloropropane (DBCP)

Trihalomethanes

Disinfection By-Products: Haloacetic Acids and Trichlorophenol

Extractable Base/Neutrals and Acids

Phenols

Polychlorinated Biphenyls (PCBs)

Polynuclear Aromatic Hydrocarbons

Organochlorine Pesticides

Chlorinated Phenoxy Acid Herbicides

Glyphosate Herbicide (Proposed)

PART 7000 RADIOACTIVITY

Introduction

Quality Assurance

Gross Alpha and Gross Beta Radioactivity (Total, Suspended, and Dissolved)

Cs - Radioactive Cesium

I - Radioactive Iodine

Ra - Radium

Sr - Total Radioactive Strontium and Strontium 90

³H - Tritium

U - Uranium

PART 8000 TOXICITY

Introduction

Mutagenesis (Proposed)

Algae

Biostimulation (Algal Productivity)

Phytoplankton

Duckweed (Proposed)

Aquatic Plants (Proposed)

Ciliated Protozoa

Scleractinian Coral

Annelids

Mollusks

Microcustaceans

Acartia

Macrocustaceans

Aquatic Insects

Fish

PART 9000 MICROBIOLOGICAL EXAMINATION

Introduction

Quality Assurance

Laboratory Apparatus

Washing and Sterilization

Preparation of Culture Media

Samples

Rapid Detection Methods

Stressed Organisms

Recreational Waters

Heterotrophic Plate Count

Direct Total Microbial Count (Proposed)

Assimilable Organic Carbon (Proposed)

Multiple-Tube Fermentation Technique for Members of the Coliform Group

Membrane Filter Technique for Members of the Coliform Group

Chromogenic Substrate Coliform Test (Proposed)

Differentiation of the Coliform Bacteria

Fecal Streptococcus and Enterococcus Group

Iron and Sulfur Bacteria

Detection of Actinomycetes

Detection of Pathogenic Bacteria

Detection of Enteric Viruses

Detection of Fungi

Pathogenic Protozoa

Nematological Examination

PART 10000 BIOLOGICAL EXAMINATION

Introduction

Plankton

Periphyton

Macrophyton

Benthic Macroinvertebrates

Fish

Identification of Aquatic Organisms

INDEX

Reference No.: 003

ASTM. 1993. Annual Book of ASTM Standards, 1993. Water and Environmental Technology. Vol. 11.04: Pesticides; Resource Recovery; Hazardous Substances and Oil Spill Responses; Waste Management; Biological Effects. Philadelphia, PA. American Society for Testing and Materials.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, toxicity/bioassay,

sampling, tissue analysis, data analysis, QA/QC

Abstract

This volume covers biological effects and other topics (including pesticides, resource recovery, hazardous substances and oil spill responses, and waste management). Under the heading of biological effects, this volume contains 70 tests, practices, and guides establishing standard procedures for assessing biological effects and environmental fate.

The following partial table of contents contains over 50 entries relevant to marine and estuarine environmental monitoring methods. Included are standard practices for the collection or sampling of benthic macroinvertebrates, zooplankton, and phytoplankton. Guides for conducting various toxicity test procedures using a variety of organisms are listed also. [extracted from document]

Contact: (215) 299-5585

BIOLOGICAL EFFECTS AND ENVIRONMENTAL FATE

C 15 AND ENVIRONMENTAL FAILE	*
	METHOD
PRACTICES FOR:	NUMBER
Algal Growth Potential Testing with Selenastrum capricornutum	3978-80 (1993)
Collecting Benthic Macroinvertebrates with Drift Nets	4558-85 (1989)
Collecting Benthic Macroinvertebrates with Ekman Grab Sampler	4343-84 (1988)
Collecting Benthic Macroinvertebrates with Holme (Scoop) Grab Sampler	4348-84 (1989)
Collecting Benthic Macroinvertebrates with Multiple-Plate Samplers	1469-92
Collecting Benthic Macroinvertebrates with Okean 50 Grab Sampler	4346-84 (1988)
Collecting Benthic Macroinvertebrates with Orange Peel Grab Sampler	4407-84 (1989)
Collecting Benthic Macroinvertebrates with Petersen Grab Sampler	4401-84 (1989)
Collecting Benthic Macroinvertebrates with Ponar Grab Sampler	4342-84 (1988)
Collecting Benthic Macroinvertebrates with Shipek (Scoop) Grab Sampler	4347-84 (1988)
Collecting Benthic Macroinvertebrates with Smith-McIntyre Grab Sampler	4344-84 (1988)
Collecting Benthic Macroinvertebrates with Surber and Related Type Samplers	4557-85 (1989)
Collecting Benthic Macroinvertebrates with the Basket Sampler	1468-92
Collecting Benthic Macroinvertebrates with Van Veen Grab Sampler	4345-84 (1988)
Conducting Bioconcentration Tests with Fishes and Saltwater Bivalve Molluscs	1022-84 (1988)
Measurement of Chlorophyll Content of Algae in Surface Waters	3731-87 (1993)
Preserving Phytoplankton Samples	4137-82 (1992)
Preserving Zooplankton Samples	1200-87 (1993)
Sampling Fish with Rotenone	4131-84 (1988)
Sampling Phytoplankton with a Clark-Bumpus Plankton Sampler	4134-82 (1993)
Sampling Phytoplankton with Conical Tow Nets	4132-82 (1987)
Sampling Phytoplankton with Depth-Integrating Samplers	4135-82 (1993)
Sampling Phytoplankton with Pumps	4133-82 (1993)
Sampling Phytoplankton with Water-Sampling Bottles	4136-82 (1993)
Sampling Zooplankton with a Clark-Bumpus Plankton Sampler	1199-87 (1993)

	003
Sampling Zooplankton with Conical Tow Nets 120	1-87 (1993)
Sampling Zooplankton with Pumps 119	8-87 (1993)
Standardized Aquatic Microcosm: Fresh Water	1366-91
Using Brine Shrimp Nauplii as Food for Test Animals in Aquatic Toxicology	1203-92
Using Octanol-Water Partition Coefficient to Estimate Median Lethal Concentrations for Fish Due to Narcosis	1242-88
GUIDES FOR:	
Acute Toxicity Test with the Rotifer Brachionus	1440-91
Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing	1391-90
Conducting Acute Toxicity Tests on Aqueous Effluents with Fishes, Macroinvertebrates, and Amphibians	1192-88
Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians	729-88a
Conducting Early Life-Stage Toxicity Tests with Fishes	1241-92
Conducting Life-Cycle Toxicity Tests with Saltwater Mysids	1191-90
Conducting Renewal Life-Cycle Toxicity Tests with Daphnia magna	1193-87
Conducting Sediment Toxicity Tests with Fresh Water Invertebrates	1383-93
Conducting the Frog Embryo Teratogenesis Assay-Xenopus (Fetax) 1439-91
Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods	1367-92
Conducting Sexual Reproduction Test with Seaweeds	1498-92
Conducting Static 96-h Toxicity Tests with Microalgae	1218-90
Conducting Static Acute Aquatic Toxicity Screening Tests with the Mosquito, Wyeomyia smithii (Coquillett)	1365-90
Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs	724-89
Conducting Static and Flow-Through Acute Toxicity Tests with Mysids from the West Coast of the United States	1463-92
Conducting Static Toxicity Tests with the Lemma gibba G3	1415-91
Conducting a Terrestrial Soil-Core Microcosm Test 119	7-87 (1993)
Conducting a Three-Brood, Renewal Toxicity Tests with Ceriodaphnia dubia	1295-89
Designing Biological Tests with Sediments	1525-93
Selecting Grab Sampling Devices for Collecting Benthnic	7-84 (1989)
Selecting Stream-Net Sampling Devices for Collecting	6-85 (1989)

TERMINOLOGY RELATING TO:

Biological Effects and Environmental Fate 943-93

003

CLASSIFICATIONS OF:

Fish Sampling Sampling Phytoplankton in Surface Waters 4211-82 (1993) 4149-82 (1993) ASTM. 1994. Annual Book of ASTM Standards, 1994. Water and Environmental Technology. 2 Vols: Water (I) and Water (II). American Society for Testing and Materials, Philadelphia, PA.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, sampling, organics, total organic carbon, PAHs, pesticides, PCBs, radioactivity, salinity, pathogenic organisms, grain size, dissolved oxygen, inorganics, metals, nutrients, turbidity, flow, pH, oxygen demand, data analysis, OA/OC

Abstract:

Section 11 of the ASTM Standards addresses the standardization of methods for:

- sampling and analysis of water, waterborne materials and wastes, water-formed deposits, and fluvial sediments
- · surface water hydraulics and hydraulic measurements
- the determination of the performance of materials used to modify water characteristics
- · the determination of the corrosivity or deposit-forming properties of water

Volume 11.01 is the first of two volumes containing standard procedures for assessing water. It is presented in four parts:

- · Terminology, Reagents, and the Reporting of Results
- Sampling and Flow Measurement
- General Properties of Water (over 20 tests and practices for assessing such properties as pH, turbidity, corrosivity, and specific gravity)
- Inorganic Constituents (includes over 70 tests and practices)

Volume 11.02 is presented in six parts:

- Organic Constituents (40 standard procedures, including general analysis methods and tests for specific procedures and oils)
- Radioactivity (20 procedures for measuring radioactivity and specific radionuclides)
- Saline and Brackish Waters, Seawaters, and Brine (over 10 tests for determining specific constituents, such as barium, iodide, bromide, and chlorine ions)
- Microbiological Examination (14 standard tests and practices)
- Water-Formed Deposits
- · Water-Treatment Materials

[extracted from document]

Contact: (215) 299-5585

VOLUME 11.01

TABLE OF CONTENTS

		METHOD NUMBER
1	TERMINOLOGY, SPECIFICATIONS, REAGENTS, AND REPORTING RESULTS	
	Terminology for Basic Statistics in Committee D-19 on Water	D 4375-90
	Terminology	D 1129-90
	Holding Time Estimation, for Water Samples Containing Organic and Inorganic Constituents	D 4841-88 (1993)
	Intralaboratory Quality Control and Reporting Low-Level Data	D 4210-89
	Good Laboratory Practices	D 3856-88
	Precision and Bias	D 2777-86
	Reagent Water	D 1193-91
	Reporting Results	D 596-91
	Sampling Chain of Custody Procedures	D 4840-88 (1993)
	Standard Operating Procedures Used in a	
	Specific Laboratory, Documenting	D 5172-91
	Terminology for Fluvial Sediment	D 4410-93a
	Biomedical Grade Water	D 5196-91
	Electronic Grade Water	D 5127-90
2	SAMPLING AND FLOW MEASUREMENT OF WATER AND	STREAM
	Discharge by Step-Backwater Method, Measurement of	D 5388-93
	Equipment for Sampling Water and Stream	D 1192-70 (1977)
	Flow Measurement, by Parshall Flume	D 1941-91
	Open Channel Flow Measurement, Velocity Area Method	D 3858-90
	Open Channel Flow Measurement, by Acoustic Means	D 4408-84
	Open Channel Flow Measurement, by Acoustic Velocity Meter Systems	D 5389-93
	Open Channel Flow Measurement, Indirectly at Culverts	D 5243-92
	Open Channel Flow Measurement, Indirectly, by Slope-Area Method	D 5130-90
	Open Channel Flow Measurement, with Thin-Plate Weirs	D 5242-92
	Open Channel Flow Measurement, Indirectly, Using Width Contractions	D 5129-90
	Open Channel Flow Measurement, with Palmer Bowlus Flumes	D 5390-93

		004
	Noncohesive Sediment, Elements of a Complete	
	Data Set for	D 5387-93
	Sampling Stream	D 1066-82
	Sampling Water	D 3370-82
	Ultra-Pure Water Samples, Handling	D 4453-91
	Velocity Measurement, Open Channels, Acoustic Means	D 3857-79
	Velocity Measurement, Open Channels, with Electromagnetic Current Meters	D 5089-90
	Velocity Measurement, Open Channels, with Rotating Element Current Meters	D 4409-91
	Water Levels in Open-Water Bodies, Measurement of	D 5413-93
3	GENERAL PROPERTIES OF WATER	
	Acidity of Alkalinity	D 1067-92
	Coagulation-Flocculation-Filtration Test	D 4188-82
	Colloids, Zeta Potential	D 4187-82
	Conductivity, Electrical	D 1125-91
	Conductivity, Electrical, On-Line Monitoring to Determine Anions and Carbon Dioxide in High-Purity	
	Water	D 4519-93
	Conductivity and Resistivity, Electrical, of a Flowing High Purity Water Sample	D 5391-93
	Corrosion and Fouling Tendency, Under Heat Transfer Conditions	D 4778-88 (1993)
	Corrosivity, in Absence of Heat Transfer (Electrical	
	Methods) (Discontinued in 1992 - Replaced by G96)	D 2776-79
	Corrosivity, Embrittlement Detector Method	D 807-82
	Corrosivity, in Absence of Heat Transfer (Weight Loss Methods)	D 2688-92
	Fouling and Corrosion Tendency, Under Heat Transfer	D 4770 00 (4000)
	Conditions	D 4778-88 (1993)
	Hardness in Water by Na ₂ H ₂ EDTA Titration Ion-Selective Electrodes, Glossary	D 1126-86 (1992) D 4127-92
	Monitoring Systems, Continual On-Line	
	Odor	D 3864-79 (1990) D 1292-86 (1990)
	On-Line Measurement of Low Level Dissolved	D 1292-80 (1990)
	Oxygen	D 5462-93
	On-Line Monitoring of Electrical Conductivity to Determine Anions and Carbon Dioxide in High-	B (F(A ==
	Purity Water	D 4519-93
	On-Line Monitoring of Carbon Compounds in Water	D 5173-91
	On-Line Monitoring Systems for Water Analysis	D 3864-79 (1980)

pH Measurement, On-Line, Water of Low Conductivity

D 1498-93

D 5128-90

D 1293-84 (1990)

Oxidation-Reduction Potential

рΗ

pH Measurement, Water of Low Conductivity	D 5464-93
Preparation of Biological Samples for Inorganic	
Chemical Analysis	D 4638-86 (1990)
Silt Density Index	D 4189-82 (1987)
Specific Gravity	D 1429-86
Surface Tension	D 1590-60 (1977)
Turbidity, Nephelometric	D 1889-88a
Ultra-Pure Water Samples	D 4453-91
4 INORGANIC COMPOUNDS	
Aluminum	D 857-89
Aluminum, by Direct Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Aluminum, Digestion of Samples for Determination	
of Metals by Flame Atomic Absorption or Plasma	D 1971-91
Emission Spectroscopy	D 1426-93
Ammonia Nitrogen	D 1420-93
Anions in Water by Chemically-Suppressed Ion Chromatography	D 4327-91
Antimony	D 3697-92
Arsenic	D 2972-93
Barium in Water, Atomic Absorption Spectrophotometry,	
Graphite Furnace	D 4382-91
Beryllium	D 3645-93
Beryllium, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Beryllium, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma	
Emission Spectroscopy	D 1971-91
Boron, by Curcumin Colorimetric-Extraction Method	D 3082-92
Boron, by Direct Current Argon Plasma Atomic	
Emission Spectroscopy	D 4190-82 (1988)
Bromide, Ion-Selective	D 1246-88
Bromide, by Chemically-Suppressed Ion Chromatography	D 4327-91
Cadmium	D 3557-90
Cadmium, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Cadmium, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 1971-91
Calcium and Magnesium	D 511-93
Calcium and Magnesium, Digestion of Samples for	201100
Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 1971-91
Calcium and Magnesium Hardness	D 1126-86 (1992)
Carbon Dioxide, Total and Dissolved	D 513-92

•	004
Chloride	D 512-89
Chloride, by Chemically-Suppressed Ion Chromatography	D 4327-91
Chlorine, Residual, in Water	D 1253-86 (1992)
Chromium, Total	D 1687-92
Chromium, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Chromium, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma Emission Spectroscopy	D 1971-91
Chromium, Dissolved Hexavalent, by Ion Chromatography	D 5257-93
Cobalt	D 3558-90
Cobalt, by Direct-Current Argon Plasma Atomic	5 0000 00
Emission Spectroscopy	D 4190-82 (1988)
Cobalt, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma	_
Emission Spectroscopy Copper	D 1971-91
Copper, by Direct-Current Argon Plasma Atomic	D 1688-90
Emission Spectroscopy	D 4190-82 (1988)
Copper, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma	` ,
Emission Spectroscopy	D 1971-91
Direct-Current Argon Plasma Atomic Emission Spectrophotometry, Elements in Water	D 4190-82 (1988)
Elements, Water, by Direct-Current Argon Plasma Atomic Emission Spectrophotometry	D 4190-82 (1988)
Elements, Water, by Flame Atomic Absorption Spectrophotometry	D 4691-87 (1992)
Elements, Water, by Graphite Furnace Atomic Absorption Spectrophotometry	D 2010 95 (1000)
Elements, Water, by Inductively-Coupled Argon	D 3919-85 (1989)
Plasma Atomic Emission Spectroscopy	D 1976-91
Flame Atomic Absorption of Plasma Emission Spectroscopy, Digestion of Samples for Determination of Metals	D 4074 04
Fluoride	D 1971-91
Fluoride, by Chemcially-Suppressed Ion	D 1179-93
Chromatography	D 4327-91
Graphite Furnace Atomic Absorption Spectrophotometry, Measuring Trace Elements	D 3919-85 (1989)
Hydrazine, Colorimetric with p-Dimethylaminobenzaldehyde	D 1385-88 (1991)
Hydroxide, Titrimetric	D 514-85 (1989)
Inductively-Coupled Argon Plasma Atomic Emission	(.000)
Spectroscopy, Elements in Water	D 1976-91

Ion Chromatography, Chemically-Suppressed Anions	D 4007 89
in Water	D 4327-88 D 1068-90
Iron	D 1000-90
Iron, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Iron, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma Emission Spectroscopy	D 1971-91
Kits, Test, Use of, to Measure Inorganic Constituents	D 5461-93
Lead	3559-90
Lead, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Lead, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma Emission Spectroscopy	D 1971-91
Magnesium and Calcium	D 511-93
Manganese and Calcium, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 1971-91
Manganese	D 858-90
Manganese, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Manganese, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma Emission Spectroscopy	D 1971-91
Mercury by Cold Vapor Atomic Absorption Spectrophotometry	D 3223-91
Mercury, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Molybdenum by Atomic Absorption Spectrophotometry	D 3372-92
Molybdenum, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma	D 4074 04
Emission Spectroscopy	D 1971-91
Nickel	D 1886-90
Nickel, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Nickel, Digestion of Samples for Determination of Metals by Flame Atomic Absorption of Plasma	D 1971-91
Emission Spectroscopy	D 4327-91
Nitrate, by Chemically-Suppressed Ion Chromatography	D 4327-91
Nitrite, by Chemically-Suppressed Ion Chromatography	D 3867-90
Nitrite-Nitrate	D 3590-89
Nitrogen, Total Kjeldahl	D 888-92
Oxygen, Dissolved in Water	D 000 02
Phosphate, by Chemically-Suppressed Ion Chromatography	D 4327-91
Phosphorus	515-88

	004
Plasma Emission Spectroscopy or Flame Atomic Absorption, Digestion of Samples for Determination of Metals	D 4074 04
Potassium, Atomic Absorption Spectrophotometry	D 1971-91
Potassium, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 4192-93 D 1971-91
Samples, Digestion, for Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 1971-91
Sample Digestion Using Closed Vessel Microwave Heating Technique, Determination of Total Recoverable Metals in Water	
Selenium	D 4309-91
Silica, Colorimetric Molybdate-Reactive Silica	D 3859-93
Silver	D 859-88
Silver, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 3866-92
the state of the s	D 1971-91
Sodium, Atomic Absorption Spectrophotometry Sodium, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma Emission Spectroscopy	D 4191-93
Sodium, Continuous Determination, Sodium-Ion Electrode	D 1971-91 D 2791-93
Strontium, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Strontium	D 3920-92
Sulfate, Turbidimetric	D 516-90
Sulfate, by Chemically-Suppressed Ion Chromatography	D 4327-91
Sulfide Ion in Water	D 4658-92
Vanadium, Atomic Absorption, Graphite Furnace	D 3373-93
Vanadium, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Zinc	D 1691-90
Zinc, by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 4190-82 (1988)
Zinc, Digestion of Samples for Determination of Metals by Flame Atomic Absorption or Plasma	, ,
Emission Spectroscopy	D 1971-91

VOLUME 11.02

1

ORGANIC CONSTITUENTS SAMPLE EXTRACTION, PREPARATION, AND PRESERVATION Holding Time for Water Samples Containing Organic D 4515-85 (1990) Constituents Organic Matter, Concentration and Recovery of, by D 2910-85 Activated Carbon (Discontinued 1993) Sample Containers, Preparation, and Organic D 3694-93 Constituents, Preservation Volatile and Semi-Volatile Organic Compounds, D 5241-92 Micro-Extraction of Water for Analysis of **GENERAL METHODS** Carbon, Total and Organic, by High-Temperature D 4129-88 (1993) Oxidation and Coulometric Detection Carbon, Total and Organic, by Ultraviolet, or Persulfate D 4839-88 Oxidation, or Both, and Infrared Detection Carbon, Total, Organic, and Inorganic, in High-Purity Water, by Ultraviolet (UV) or Persulfate Oxidation, or D 4779-93 Both and Infrared Detection D 2579-93 Carbon, Total and Organic Halides, Organic, by Carbon Adsorption-Microcoulometric D 4744-89 Detection Nitrogen, Total Chemically Bound, by Pyrolysis and D 5176-91 Chemiluminescence Detection Oil and Grease (Fluorocarbon Extractable Substances), by D 4281-93 Gravimetric Determination D 3921-85 (1990) Oil and Grease, and Petroleum Hydrocarbons Oxygen Demand, Chemical (Dichromate Oxygen Demand) D 1252-88 **CLASS-SPECIFIC METHODS** D 4763-88 Chemicals, Identification, by Fluorescence Spectroscopy D 2036-91 Cyanides D 4282-89 Cyanide, Free, by Microdiffusion D 4374-93 Cyanide, Total, and Acid Dissociable, and Thiocyanate D 4165-89 Cyanogen Chloride D 3113-92 EDTA, Sodium Salts of D 2330-88 Methylene Blue Active Substances D 1783-91 Phenolic Compounds D 4193-89 Thiocyanate D 4374-93 Thiocyanate COMPOUND-SPECIFIC METHODS Chlorinated Organic Acid Compounds, Determination of, by Gas Chromatagraphy with an Electron Capture Detector D 5317-93 Complex Polycyclic Aromatic Hydrocarbon Mixtures of D 5412-93 Petroleum Oils, Quantification of

Cyclohexylamine, Morpholine, and Diethylaminoethanol in Water and Condensed Steam by Direct Aqueous	,
Injection Gas Chromatography 1,2-Dibromoethane and 1,2-Dibromo-Chromatography, by	D 4983-89
Micro-Extraction and Gas Chromatography Gas Chromatography and Electron Impact Mass	D 5316-92
Spectrometry, Identification of Organic Compound	D 4128-89
Halogenated Hydrocarbons, Low-Molecular Weight	D 3973-85 (1990)
Herbicides, Chlorinated Phenoxy Acids	D 3478-85
Nitriles, by Gas-Liquid Chromatography	D 3371-79 (1990)
N-Methylcarbamoyloximes and N-Methylcarbamates, by Direct Aqueous Injection HPLC with Post Column Derivatization	D 5045 00
Organic Compounds, Purgeable, Using Headspace	D 5315-92
Sampling	D 3871-84 (1990)
Organic Matter, Volatile, by Aqueous-Injection Gas Chromatography	D 2908-91
Organohalide Pesticides and Polychlorinated Biphenyls, by Microextraction and Gas	
Chromatography	D 5175-91
Pesticides, Organochlorine	D 3086-85 (1990)
Pesticides, Nitrogen and Phosphorus Containing, by Gas Chromatography with a Nitrogen-Phosphorus	,
Detector	D 5475-93
Phenols, by Gas-Liquid Chromatography	D 2580-89
Polychlorinated Biphenyls (PCBs)	D 3534-85 (1990)
Polychlorinated Biphenyls and Organohalide Pesticides, by Microextraction and Gas Chromatography	D 517# 01
÷	D 5175-91
Polynuclear Aromatic Hydrocarbons	D 4657-92
Volatile Alcohols, by Direct Aqueous-Injection Gas Chromatography	D 3695-88
WATERBORNE OILS	D 0000-00
Analysis for Selected Elements (Discontinued 1994)	D 3327-79
Identification	D 3415-90
Petroleurn Oils, Comparison of, by Fluorescence	2011000
Analysis	D 3650-93
Petroleum Oils, Comparison of, by Gas Chromatography	D 3328-90
Petroleum Oils, Comparison of, by High Performance Liquid Chromatography	D 5037-90
Petroleurn Oils, Comparison of, by Infrared	
Spectroscopy	D 3414-80 (1990)
Preparation of Samples for Identification	D 3326-90
Preservation of Samples	D 3325-90
Sampling	D 4489-85 (1990)

2	RADIOACTIVITY		
	MEASUREMENT OF RADIOACTIVITY		
	Alpha Particle Radioactivity	D 1943-90	
	Alpha Spectrometry	D 3084-89	
	Beta Particle Radioactivity	D 1890-90	
	Gamma-Ray Spectrometry High Resolution	D 3649-91	
	Nal (TI) Gamma-Ray Spectrometry	D 4962-89	
	Radioactivity, Practices for Measurement	D 3648-78 (1987)	
	Radionuclides in Reactor Coolant, Calculation of Average		
	Energy per Disintegration ($\overline{\mathbb{E}}$) for a Mixture of	D 5411-93	
	SPECIFIC RADIONUCLIDES		
	Iodine (Discontinued 1992)	D 2334-88	
	Iodine-131, Low-Level	D 4785-93	
	Iron	D 4922-89	
	Plutonium	D 3865-90	
	Radium, Radionuclides of	D 2460-90	
	Radium-226	D 3454-91	
	Radon in Drinking Water	D 5072-92	
	Tritium (Discontinued 1993 - Replaced by D 4107)	D 2476-81 (1987)	
	Uranium	D 2907-91	
	Uranium, Isotopic, by Radiochemistry	D 3972-90	
	Uranium, Trace, by Pulsed-Laser Phosphorimetry	D 5174-91	
3	SALINE AND BRACKISH WATERS, SEAWATERS, AND BRINES		
	GENERAL		
	Alkalinity	D 3875-80 (1993)	
	Substitute Ocean Water	D 1141-90 (1992)	
	Water Injectivity Through the Use of On-Site Floods, Determining	D 4520-86	
	SPECIFIC CONSTITUENTS		
	Barium	D 3651-92	
	Barium by Direct-Current Argon Plasma Atomic Emission Spectroscopy	D 3986-81 (1991)	
	Barium Sulfate, Strontium Sulfate, and Calcium Sulfate Dihydrate (Gypsum)	D 4328-84 (1993)	
	Chloride Ions	D 4458-85 (1989)	
	Fluoride lons	D 3868-79 (1989)	
	lodide and Bromide	D 3869-79 (1989)	
	Lithium, Potassium, and Sodium by Atomic Absorption Spectrophotometry	D 3561-77 (1992)	
	Potassium, Lithium, and Sodium by Atomic Absorption Spectrophotometry	D 3561-77 (1992)	
	Sodium , Potassium, and Lithium by Atomic Absorption Spectrophotometry	D 3561-77 (1992)	

	Strontium, by Atomic Absorption Spectrophotometry	D 3352-74 (1989)
	Barium Sulfate, Strontium Sulfate, and Calcium Sulfate	
	Dihydrate (Gypsum)	D 4328-84 (1993)
	Sulfate Ion	D 4130-82 (1987)
	Moderno	
4	MICROBIOLOGICAL EXAMINATION	
	Cleaning Laboratory Glassware, Plasticware, and Equipmen	
	Adenosine Triphosphate (ATP) Content	D 4012-81 (1990)
	Determining Microbial Counts from Waters Analyzed by Plating Methods	D 5465-93
	Bacteria, Total Count	F 488-79
	Candida albicans, Enumeration	D 4249-83 (1992)
	Characteristics, Colony Counting Methods in Bacteriology	D 3870-91
	Cleaning Laboratory Glassware, Plasticware, and Equipmen	
	Coliphages	D 4201-82 (1989)
	Enterococci, Isolation and Enumeration by Membrane-Filter	2 .201 02 (1000)
	Procedure	D 5259-91
	Fecal Coliform Recovery, Evaluation of Membrane Filters	D 3508-78 (1982)
	Iron Bacteria	D 932-85 (1990)
	Isolation and Enumeration of <i>Escherichia coli</i> by the Two-Step Membrane Filter Procedure	D 5392-93
	Microbiological Contaminants, Detection and Enumeration (Discontinued 1993)	F 60-68 (1983)
	Microscopy Counting, Epifluorescence Enumeration	D 4455-85 (1990)
	Oxygen Uptake	D 4478-85
	Pseudonomas aeruginosa, Isolation and Enumeration	D 5246-92
	Recovery of Enteroviruses	D 5244-92
	Recovery of Viruses from Wastewater Sludges	D 4994-89
	Simultaneous Enumeration of Total Respiring Bacteria in	
	Aquatic Systems by Microscopy	D 4454-85 (1990)
	Sulfate-Reducing Bacteria	D 4412-84 (1990)
5	WATER-FORMED DEPOSITS	
Ŭ	Chemical Microscopy	D 1245-84 (1989)
	Corrosivity of Solvent Systems for Removing Deposits	D 3263-82 (1989)
	Deposit-Forming Impurities in Steam	D 2185-84 (1990)
	Deposition, Accumulated, in a Steam Generator Tube	D 3483-83 (1990)
	Extraction, Trace Elements	D 3974-81 (1990)
	Iron Bacteria	D 932-85 (1990)
	Morphologic Characteristics of Surface Water Bodies,	
	Measurement	D 4581-86 (1990)
	Phosphorus and Organic Phosphorus in Sediments, Total Recoverable	D 4183-82
	Reporting Results	D 933-84 (1990)

	Reporting Results of Examination and Analysis of Deposits Formed From Water for Subsurface Injection	D 4025-93
	Sampling	D 887-82 (1989)
	Sampling Fluvial Sediment in Motion	D 4411-93
	Sediments, Acid Extraction of Elements, Using Closed Vesse Microwave Heating	el D 5258-92
	Sediments, Fluvial, Particle Size Analysis, Selection of Methods (Manual)	D 4822-88
	Sediments, Submerged, Unconsolidated, Guide for Core-Sampling	D 4823-88
	Sediment Reference Samples, Preparation of, for Major and Trace Inorganic Constituent Analysis by Partial Extraction Procedures	D 5074-90
	Sediment Samples, Chemical Analysis	D 3976-92
	Sediment Samples, Collaborative Testing	D 3975-93
	Sediment Samples, Total Digestion of, for Chemical Analysis of Various Metals	D 4698-92
	Silica, Low-Level Total, by Flameless Atomic Absorption Spectroscopy	D 4517-85 (1990)
	Solvent Systems, Analysis of (Discontinued 1994)	D 2790-83
	Solvent Systems for Dissolving Water Formed Deposits, Efficacy of	D 4743-92
	Dynamic Solvent Systems for Dissolving Water-Formed Deposits, Relative Efficiency of	D 5256-92
	Sulfate-Reducing Bacteria	D 4412-84 (1990)
	Surface Water, Depth Measurement of	D 5073-90
	Suspended-Sediment Concentration in Water Samples	D 3977-80
	Water-Formed Deposits, Preparation and Preliminary Testing	D 2331-80 (1990)
	X-Ray Diffraction Analysis, Identification of Crystalline Compounds	D 934-80 (1990)
	X-Ray Fluorescence Analysis, Wavelength-Dispersive	D 2332-84 (1989)
6	WATER TREATMENT MATERIALS CHEMICALS	
	Chlorine Requirement	D 1291-89
	Coagulation-Flocculation Jar Test	D 2035-80 (1990)
	PARTICULATE ION-EXCHANGE MATERIALS	, ,
	Anion-Cation Balance, Mixed-Bed Ion-Exchange Resins	D 4548-91
	Column Capacity, Mixed-Bed Ion-Exchange Materials	D 3375-84
	Fouling and Degradation of Particulate Ion-Exchange Materials, Detection	D 5217-91
	Operating Performance, Anion-Exchange Materials for Strong Acid Removal	D 3087-91
	Operating Performance, Particulate Cation-Exchange Materials	D 1782-91

- 1	a	0	Λ
	0	u	4
	v	•	

' fo

Organic Fouling of Particulate Anion Exchange Resins	D 5042-90
Physical and Chemical Properties	D 2187-93
Powdered Ion-Exchange Resins, Precoat Capacity	D 4266-83 (1990)
Powered Ion-Exchange Resins, Physical and Chemical	
Properties	D 4456-85 (1990)
Sampling	D 2687-84 (1990)
MEMBRANE FILTERS	
Absorbent Pads, Bacteriological Analysis, and Growth	D 4198-82 (1993)
Autoclavability	D 4199-82 (1993)
Characteristics, Pore Size	F 316-86
Electrodialysis/Electrodialysis Reversal Applications, Water	
Analysis for	D 5091-90
Electrodialysis/Electrodialysis Recordkeeping	D 5131-90
Fecal Coliform, Recoverability	D 3508-78 (1982)
Ink Grids, Inhibitory Effects	D 4200-82 (1993)
Liquid Flow Rate, Membrane Filters	F 317-72 (1982)
Porosity, Percent	D 4197-82
Retention Characteristics 0.2 µm Membrane Filters	D 3862-80 (1990)
Retention Characteristics 0.40 to 0.45 μm Membrane Filters	D 3863-87 (1993)
Sterility, Membrane Filters	D 4196-82 (1993)
Ultrafiltration Permeate Flow Performance Data,	
Standardizing	D 5090-90
Water-Extractable Matter, Quality	D 3861-84
MEMBRANES, REVERSE OSMOSIS	
Detecting Leaks	D 3923-80 (1989)
Langelier Saturation Index	D 3739-88 (1993)
Operating Characteristics, Reverse Osmosis Devices	D 4194-89
Recordkeeping, Reverse Osmosis Systems	D 4472-89
Scaling Salts for Reverse Osmosis, Calculation, and	
Adjustment	D 4692-87 (1992)
Silica (SiO ₂) Scaling, Calculating, and Adjustment	D 4993-89
Standardizing Reverse Osmosis Performance Data	D 4516-85 (1989)
Stiff and Davis Stability Index for Reverse Osmosis,	m
Calculation, and Adjustment	D 4582-91
Water Analysis, Reverse Osmosis Application	D 4195-88 (1993)

		•	
		•	

Reference No.:

005

State Water Resources Control Board. 1990. California Ocean Plan. Water Quality Control Plan for Ocean Waters of California. State of California, State Water Resources Control Board, Sacramento, CA. pp. 23.

Media in which methods can be used:

✓ Water

Sediment

Biota

Keywords:

Water quality, data analysis, pH, salinity, total solids, turbidity, temperature, metals, inorganics, organics, PAHs, PCBs, pesticides, organotins, radioactivity,

pathogenic organisms

Abstract

This is a State of California regulatory document commonly referred to as the California Ocean Plan. The document specifies regulatory water quality objectives for physical, chemical, biological, bacterial, and radioactive characteristics, as well as effluent quality requirements for discharges into state waters. Toxic material limitations are set out in terms of instantaneous maximum, daily maximum, and 6-month median values. Objectives for the protection of human health are stated as 30-day average maximum concentrations and estimates of chronic toxicity are given for metals. Minimum standard monitoring procedures for discharges into ocean waters are outlined. [compiled after review]

Contact: (916) 657-2390

INTRODUCTION

1 BENEFICIAL USES

2 WATER QUALITY OBJECTIVES

Bacterial Characteristics

Water-Contact Standards

Shellfish Harvesting Standards

Bacterial Assessment and Remedial Action Requirements

Physical Characteristics

Chemical Characteristics

Biological Characteristics

Radioactivity

3 GENERAL REQUIREMENTS FOR MANAGEMENT OF WASTE DISCHARGE TO THE OCEAN

4 QUALITY REQUIREMENTS FOR WASTE DISCHARGES (EFFLUENT QUALITY REQUIREMENTS)

Table A: Major Wastewater Constituents and Properties

Table B: Toxic Materials Limitations

Table C: Background Seawater Concentrations

5 DISCHARGE PROHIBITIONS

Hazardous Substances

Areas of Special Biological Significance

Sludge

By-Passing

6 GENERAL PROVISIONS

Effective Date

Waste Discharge Requirements

Table D: Conservative Estimates of Chronic Toxicity

Revision of Waste Discharge Requirements

Monitoring Program

Areas of Special Biological Significance

State Board Exceptions to Plan Requirements

APPENDIX 1: DEFINITION OF TERMS

APPENDIX 2: STANDARD MONITORING PROCEDURES

State Water Resources Control Board. 1990. Procedures Manual for Conducting Toxicity Tests Developed by the Marine Bioassay Project. Prepared by B. Anderson et al., Water Resources Control Board, State of California, Sacramento, CA. pp. 121. Report No. 90-10WO.

Sediment Media in which methods can be used: ✓ Water ✓ Biota

Water quality, biological characterization, sampling, toxicity/bioassays Keywords:

Abstract

This manual provides detailed instructions for conducting short-term toxicity tests developed by the Marine Bioassay Project (MBP). The MBP was initiated in 1984 by the California State Water Resources Control Board (State Board) to design and develop sensitive measures for testing toxicity of discharges to marine waters. Species selection emphasizes use of organisms present in California. Consistent with multispecies testing procedure, the MBP has developed protocols for an alga, a fish, and two invertebrates native to California's waters.

This manual consists of five chapters, which are summarized below:

Chapter 1 described basic quality assurance and quality control (QA/QC) requirements for conducting marine toxicity tests. Test-specific OA/OC requirements for conducting marine toxicity tests are included in the individual protocols.

Chapter 2 describes an invertebrate test, the abalone larval development protocol, which is a 48-hour static exposure test. The abalone tests protocol is one of seven tests approved by the State Board in March 1990 for measuring compliance with the chronic toxicity objectives of the California Ocean Plan.

Chapter 3 contains the algal test, the giant kelp germination and growth test. This 48-hour static exposure test has also been approved for measuring compliance with the California Ocean Plan.

Chapter 4 describes a 96-hour static renewal test using a crustacean. This protocol incorporates an endpoint of mortality to juvenile mysid shrimp. Test development is being continued on a non-lethal endpoint that measures mysid growth.

Chapter 5 contains a tentative protocol for a fish species, the topsmelt. This is a 12-day static renewal test measuring embryonic development.

While this manual contains the latest versions of protocols developed by the MBP, it is anticipated that all four will undergo further improvement and modification with continued testing by the MBP and other interested laboratories. Since test acceptability requirements are based on empirical observations performed with reference toxicants, continued repetitive testing may lead to modification of these acceptability requirements. Note that individual pages describing each toxicity test protocol are titled, dated, and paginated so that periodic updates issued by the MBP can be inserted directly into the manual. [extracted from document]

Contact: (916) 657-2390

- 1 MARINE TOXICITY TEST QUALITY ASSURANCE AND QUALITY CONTROL
- 2 ABALONE LARVAL DEVELOPMENT PROTOCOL
- 3 GIANT KELP GERMINATION AND GROWTH PROTOCOL
- 4 MYSID EARLY LIFE-STAGE LETHALITY PROTOCOL
- 5 TOPSMELT EMBRYO DEVELOPMENT PROTOCOL

APPENDIX A THE MARINE BIOASSAY PROJECT (ORGANIZATION)

Chesapeake Bay Program. 1991. Chesapeake Bay Coordinated Split Sample Program Implementation Guidelines Revision 3. U.S. Environmental Protection Agency, Chesapeake Bay Program Office, Annapolis, MD. CBP/TRS 58/91 Revision 3. EPA X 8812-0030ZN.

Media in which methods can be used: **✓** Water Sediment Biota

Keywords: Water quality, sampling, QA/QC, data analysis/management

Abstract

In 1988, the Chesapeake Bay Program's Monitoring Subcommittee identified the need to assess the comparability of the water quality data produced by the many agencies participating in the basinwide data collection programs. The Monitoring Subcommittee's Analytical Methods and Quality Assurance Workgroup recommended the implementation of a basinwide coordinated split sample program to address this programmatic need. Although individual laboratories can evaluate the performance of their own analytical operations against standard reference materials, the most complete mechanism for the evaluation of total sampling and analysis system variability is through the use of field split samples. These include both field and laboratory sources of variability.

The major objective of the Coordinated Split Sample Program (CSSP) is to establish a measure of comparability between sampling and analytical operations for water quality monitoring basinwide. A secondary objective is to evaluate the in-matrix dilution of standard EPA reference materials. These standard reference materials are analyzed in appropriate matrix, fresh to saline, and concentration level to match the sample.

This document provides specific guidance to agency managers on the implementation of the split-sample program. This guidance includes suggested protocols for sample collection, sample analysis, and for data management and analysis. The focus of the guidelines is the Chesapeake Bay Program, and includes specific information such as point of contact and telephone numbers for each geographical component of the program. However, the descriptions of protocols could easily be adapted to other locales and programs.

[extracted from document]

Contact: (301) 267-0061

- 1 BACKGROUND
- 2 PROGRAM OBJECTIVES
- 3 PROGRAM DESIGN CONSIDERATIONS
- 4 SPLIT-SAMPLE PROGRAM RESPONSIBILITIES

 Component Program Responsibilities

 Data Management and Reporting Responsibilities
 - Coordinated Split-Sample Program Oversight Responsibilities
- 5 SPLIT-SAMPLE COLLECTION AND PROCESSING PROTOCOLS
- 6 LABORATORY SAMPLE HANDLING AND ANALYSIS PROTOCOLS
- 7 DATA MANAGEMENT REQUIREMENTS AND PROTOCOLS

Chain-of-Custody Form

Diskette Submission

Data Format and Parameter Names

Diskette Formats

Hardcopy Submission

Accompanying Narrative

Data Verification

- 8 STATISTICAL DATA ANALYSIS AND REPORTING
- 9 COORDINATED SPLIT-SAMPLE PROGRAM IMPLEMENTATION
- 10 SPLIT SAMPLE COMPONENT PROGRAMS

Chesapeake Bay Coordinated Split-Sample Program

Mainstem/Tidal Tributaries Component

Virginia Mainstem/Tributaries Component

Tidal Potomac River Component

Non-Tidal Tributaries/Fall-Line Component

11 REFERENCES

Chesapeake Bay Program. 1992. Chesapeake Bay Program Data Management Plan. U.S. Environmental Protection Agency, Chesapeake Bay Program Monitoring Subcommittee, Annapolis, MD. pp. 297.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, QA/QC, data manage-

ment

Abstract

Data management has long been recognized as an integral part of the Chesapeake Bay Program (CBP). The efforts of all CBP partner agencies to manage the resources of the Chesapeake Bay require an extensive database of known and documented quality. The data must be easily accessed for analytical and reporting purposes. A key to achieving these goals is to acquire or create common data attributes in similar or translatable formats. This plan describes the data forms and procedures for the submission, storage, and retrieval of Chesapeake Bay data at the CBP.

This data management plan describes the Chesapeake Bay Program procedures and standards to acquire, store, and access Chesapeake Bay data. The plan contains:

- data submission procedures
- quality assurance practices for the data
- database summaries
- appendices, that include:
 - data submission forms (w/completed examples)
 - data quality assurance policies and definitions
 - data dictionary and code tables

For further information or clarification pertaining to this plan, please contact the Computer Sciences Corporation database administrator at (800) 532-2281 or (410) 267-0061, or write to:

> Data Base Administrator Computer Sciences Corporation c/o U.S. Environmental Protection Agency Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, MD 21403

[extracted from document]

Contact: (301) 267-0061

- 1 INTRODUCTION
- 2 DATA QUALITY ASSURANCE PROCEDURES
- 3 DATA SUBMISSION PROCEDURES
- 4 THE DATA APPROVAL PROCESS
- 5 DATA BASE SUMMARIES
- APPENDIX A: QUALITY ASSURANCE POLICY
- APPENDIX B: QUALITY ASSURANCE DEFINITIONS
- APPENDIX C: PROJECT INFORMATION FORM
- APPENDIX D: DATA SET DOCUMENTATION FORM
- APPENDIX E: DATA DOCUMENTATION FORM
- APPENDIX F: DATA DICTIONARY
- APPENDIX G: DATA DICTIONARY TABLES
- APPENDIX H: DATA PROCESSING REQUEST FORMS

009

Chesapeake Bay Program. 1992. Guidance for the Analysis of Water Quality Trends in Chesapeake Bay - Draft. Prepared by the Data Analysis Workgroup of the Chesapeake Bay Program Monitoring Subcommittee for the State of Maryland, Department of the Environment, Baltimore, MD.

Media in which methods can be used:

✓ Water

Sediment

___Biota

Keywords:

Water quality, data analysis/management

Abstract

Environmental data typically have characteristics such as temporal variability, spatial heterogeneity, and measurement error which present problems when these data are analyzed. Compounding these problems is the long-term nature of trend detection which often means patching together a decade or more of investigations by several principal investigators, analytical laboratories, and managing agencies.

The intent of this document is to help guide data analysis through the process of analyzing trends in water quality, so that technically sound conclusions and interpretations can be reached to support program management decisions.

This guidance is also intended to foster a consistent approach to trend analyses among the various investigators and jurisdictions involved in the monitoring and analysis of Chesapeake Bay water quality information.

The scope of this report is limited to water quality data, although many of the principles can be used for other types of information. The reader is assumed to be familiar with estuarine water quality, basic statistical analysis, and environmental management. The guidance is generic since the range of variables, data availability, and long-term management actions, make it practically impossible to provide an approach that will work for all situations. By following this guidance, tailored to the needs and availability of data for a particular situation, the analyst should be able to avoid many of the problems that can undermine such analyses, or at least understand the limits and assumptions attendant to the conclusions.

Clearly this brief guidance document is not a handbook for statistical analysis. It provides "guidance" to the analyst as to where more information may be found for those methods which are of interest on the basis of the brief description in this document. In addition to cited references, there is a separate annotated bibliography of references for detail and rigor that cannot be provided here. [extracted from document]

Contact: (410) 631-3680

1 INTRODUCTION

2 ANALYTICAL OBJECTIVES

Hypothesis Development

Choosing Parameters for Analysis

3 DATA REVIEW AND ASSEMBLY

Identification of Potential Data Sets for Analysis of Trends and Their Documentation

Review of Field and Laboratory Methods

Examination of Quality Assurance/Quality Control Information

Data Inspection and Characterization

Identification of Outliers

Acceptance of Data Sets

References

4 DATA ANALYSIS

Selection of Appropriate Spatial and Temporal Scales

Spatial Resolution

Temporal Resolution

Exploratory Data Analysis

Confirmatory Data Analysis

Data Characteristics

Distribution

Censoring

Step vs. Monotonic Trend

Unequal Variances

Seasonality

Persistence

Missing Data

Flow Adjustment

Power and Robustness

Confirmatory Tests

Seasonal Kendall

Van Belle and Hughes Intrablock Tests

Other Possibilities

Mann-Kendall

Mann-Kendall With Correction for Serial Dependence

Seasonal Kendall With Correction for Serial Dependence

Van Belle and Hughes Intrablock Test With Correction for Serial Dependence

References

5 DATA INTERPRETATION

6 ANNOTATED BIBLIOGRAPHY

Primary References Secondary References References for Intervention Analysis Books

7 BIBLIOGRAPHY OF TREND DETECTION SOFTWARE DETECT & EXCEED

SAS Statistics and ETS
McLeod-Hipel Time Series Package
USGS Trend Detection Software
Attachment 1: Summary of DAITS Program and Issues

Reference No.: 010

Chesapeake Bay Program. 1993. Guide to Using Chesapeake Bay Program Water Quality Monitoring Data. Chesapeake Bay Program, Baltimore, MD. CBP/TRS 78/92. (NTIS: PB93-205888).

Media in which methods can be used:

Water Sediment Biota

Keywords: Water quality, data analysis/management

Abstract

The Chesapeake Bay Program, a cooperative effort between the federal government and the state and local governments in the Chesapeake Bay watershed, provides funds to the states of Maryland and Virginia for the routine monitoring of 19 directly measured water quality parameters at 49 stations in the mainstem Bay. The Water Quality Monitoring Program began in June 1984 with stations sampled once each month during the colder late fall and winter months and twice each month in the warmer months. The three collecting organizations coordinate the sampling times of their respective stations, so that data for each sampling event, or "cruise", represent a synoptic picture of the Bay at that point in time.

This document describes the Chesapeake Bay Mainstem Water Quality Monitoring Program in general and provides detailed information about the existing Program database. The two main purposes of this document are to assist those who wish to obtain monitoring data and to provide information to data analysts about the database.

Monitoring Program sampling locations are identified in the database by station name and by latitude and longitude. At each station, a hydrographic profile is made (including water temperature, salinity, and dissolved oxygen) at approximately 1- to 2-meter intervals. Water samples for chemical analysis (e.g., nutrients and chlorophyll) are collected at surface and bottom, and two additional depths depending on the existence and location of a pycnocline (region(s) of density discontinuity in the water column). Correlative data on sea state and climate are also collected and in some cases additional optional parameters are available.

Data in the primary database consist of all directly measured parameters. For user applications, however, calculated values, such as total nitrogen and total phosphorus, are provided if the requisite components are available.

Information in this document is essential for properly manipulating (sorting, subsetting) the data. Other facts are important in designing, implementing, and interpreting data analyses. Some topics are interrelated and may be discussed in more than one place in the Guide.

This document is designed to help the potential data user formulate a data request tailored to his or her needs. It serves as a common starting point for communication between the user and the data provider at the CBP Computer Center. Potential data users should review the document and fill out and submit the included data request form prior to any communication with CBPCC staff. [extracted from document]

Contact: (800) 968-7229

1 OVERVIEW

The Guide

The Water Quality Monitoring Program

The Database

Data Request Form

2 GENERAL DESCRIPTION

Monitoring Program Design

Sample Collection and Water Quality Parameters

Database

Quality Assurance (QA)

Program Sponsor

Participating Agencies

3 DATA BASE INFORMATION

Data Documentation

Identifier Variables

Water Quality Parameters

Physical Profile Sampling Methods

Dissolved Oxygen

Dissolved Oxygen Saturation

рΗ

Salinity

Secchi Disk Depth

Specific Conductivity

Water Temperature

Specific Gravity

Field Filtration Methods

Total Phosphorus

Total Dissolved Phosphorus

Particulate Phosphorus

Orthophosphate (filtered) and Dissolved Inorganic Phosphorus

Dissolved Organic Phosphorus

Total Nitrogen

Total Dissolved Nitrogen

Particulate Organic Nitrogen and Particulate Nitrogen

Total Kjeldahl Nitrogen, Whole and Filtered

Nitrite + Nitrate, Filtered and Nitrate, Filtered

Nitrite, Filtered

Ammonium, Filtered

Dissolved Inorganic Nitrogen

Dissolved Organic Nitrogen and Total Organic Nitrogen Total Organic Carbon Dissolved Organic Carbon Particulate Organic Carbon and Particulate Carbon Silica, Filtered **Total Suspended Solids** Chlorophyll-α and Phaeophytin, Spectrophotometric Chlorophyll- α and Phaeophytin, Fluorometric

Other Parameters

Measured and Calculated Laboratory Parameters Lower Detection Limits of Water Quality Parameters Data Analysis Issues Tracking System (DAITS)

4 QUALITY ASSURANCE (QA) DATA

Introduction Within-Organization QA Data Field QA Data Laboratory QA Data Inter-Organization QA Data Early Split Sample and Co-located Sample Results Coordinated Split Sample Program (CSSP)

RELATED DOCUMENTATION

Chesapeake Bay Program. 1994. Recommended Guidelines for Sampling and Analysis in the Chesapeake Bay Monitoring Program. U.S. Environmental Protection Agency, Region 3, Chesapeake Bay Program Office, Annapolis, MD. Draft report.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, QA/QC, population/community, chlorophyll, organic carbon, oxygen demand, nutrients, grain size, total solids

Abstract

The propose of this document is to provide field and laboratory methods and associated quality control (QC) procedures and criteria that will result in the generation of data of known and documented quality for use in the Chesapeake Bay Monitoring Program. Under this document, the Participant will conduct field measurements and collect and analyze water and sediment samples for specific physical, chemical, and biological parameters that are in accordance with previous data collection efforts. These monitoring data will be used in characterizing the health of the Virginia portion of the Chesapeake Bay and its tributaries, identifying long term trends, and providing data and guidance to managers and modelers during the restoration phase.

This document includes the requirements and procedures for field measurements, field sampling, and laboratory analysis in support of the Chesapeake Bay Monitoring Program. The first chapters provide general information regarding technical and contractual requirements, and the remaining chapters have been organized so as to correspond chronologically with the field and laboratory activities performed. [extracted from document]

Contact: (800) 968-7229

1 INTRODUCTION

Overview

Purpose of the SOW

Organization of the SOW

Quality Assurance Considerations

Health and Safety Considerations

Other Federal and State Requirements

Future Considerations

Summary of Requirements

SOW Task Areas

Personnel Requirements

Facilities

Instrumentation and Equipment

2 QUALITY ASSURANCE

Introduction

General QA/QC Requirements

Reporting

Chain-of-Custody

Participation in Technical Meetings

Procedural Change Authorization

Data Quality Objectives

General DOQs

Sampling

Field Measurements

Water Quality Monitoring

Phytoplankton Monitoring

Zooplankton Monitoring

Benthic Monitoring

Documentation Requirements

Contractor QA Plan

QA Project Plans

Standard Operating Procedures

Document Control

Contractor Contingency/Health and Safety Plans

Contractor Performance Assessment

Split Sample Program

Performance Evaluation Samples

Audits of Data Quality

On-Site Audits

References

3 DATA MANAGEMENT AND DELIVERABLES REQUIREMENTS

4 WATER QUALITY MONITORING

Introduction

Objectives and Scope

Rationale

WQ Parameter List and Detection Limits

Field Measurements and Sampling

Introduction

Field Measurements

Sampling

Laboratory Analysis

General Laboratory QA/QC

Total Dissolved Phosphorus

Dissolved Orthophosphate

Particulate Phosphorus

Nitrite

Nitrate + Nitrite

Ammonia

Total Dissolved Nitrogen

Particulate Nitrogen

Particulate Carbon

Dissolved Organic Carbon

BOD, 5 Day

Chlorophyll and Phaeophytin

Total Suspended Solids

Fixed Suspended Solids

Silicates

Alkalinity

5 PHYTOPLANKTON MONITORING

Introduction

Objectives and Scope

Rationale

Phytoplankton Monitoring Parameter List

Field Measurements and Sampling

Introduction

General Field QA/QC Procedures

Field Measurements

Sampling

Laboratory Analysis

General Laboratory QA/QC Procedures

Data Analysis

Phytoplankton Analysis

Picoplankton Analysis

Productivity Analysis

References

6 ZOOPLANKTON MONITORING

Introduction

Objectives and Scope

Rationale

Zooplankton Monitoring Parameter List

Field Measurements and Sampling

Introduction

General Field QA/QC Procedures

Field Measurements

Sampling

Laboratory Analysis

General Laboratory QA/QC Procedures

Data Analysis

Zooplankton Analysis

References

7 BENTHIC MONITORING

Introduction

Objectives and Scope

Rationale

Benthic Monitoring Parameter List

Field Measurements and Sampling

Introduction

General Field QA/QC Procedures

Field Measurements

Sampling

Laboratory Analysis

General QA/QC Procedures

Data Analysis

Macrofaunal Analysis

Sediment Analysis

References

GLOSSARY

APPENDIX A: HEALTH AND SAFETY PROTOCOLS FOR EPA VESSELS

APPENDIX B: CHESAPEAKE BAY PROGRAM AQPJP CHECKLIST

Reference No.: 012

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold New York, NY.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, sampling, OA/OC, data analysis

Abstract

The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book attempts to help fill that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. The book is written primarily for nonstatisticians (environmental scientists, engineers, hydrologists, etc.) who have had perhaps one or two introductory statistics courses. Most of the statistical techniques discussed are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. In addition to being a general reference, this book might be used in an upper undergraduate or lower graduate level applied statistics course or as a supplemental book for such a class.

The book is logically, though not formally, divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Some statistical techniques given here are not commonly seen in statistics books. For example, methods for handling correlated data, for detecting hot spots, and for estimating a confidence interval for the mean of a lognormal distribution. Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods. Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included. [extracted from document]

1 INTRODUCTION

Types and Objectives of Environmental Pollution Studies Statistical Design and Analysis Problems Overview of the Design and Analysis Process Summary

2 SAMPLING ENVIRONMENTAL POPULATIONS

Sampling in Space and Time
Target and Sampled Populations
Representative Units
Choosing a Sampling Plan
Variability and Error in Environmental Studies
Case Study
Summary

3 ENVIRONMENTAL SAMPLING DESIGN

Introduction
Criteria for Choosing a Sampling Plan
Methods for Selecting Sampling Locations and Times
Summary

4 SIMPLE RANDOM SAMPLING

Basic Concepts
Estimating the Mean and Total Amount
Effect of Measurement Errors

Number of Measurements: Independent Data Number of Measurements: Correlated Data

Estimating Var (x)

Summary

5 STRATIFIED RANDOM SAMPLING

Basic Concepts
Estimating the Mean
Estimating the Total Amount
Arbitrary Selection of Strata
Allocation of Samples to Strata
Number of Samples
Case Study
Summary

6 TWO-STAGE SAMPLING

Basic Concepts
Primary Units of Equal Size
Primary Units of Unequal Size
Summary

7 COMPOSITING AND THREE-STAGE SAMPLING

Basic Concepts
Equal-Sized Units
Unequal-Sized Units
Summary

8 SYSTEMATIC SAMPLING

Sampling Along a Line
Sampling Over Space
Comparing Systematic with Random Sampling
Estimating the Mean and Variance
Populations with Trends
Estimating Var (x) from a Single Systematic Sample
Estimating Spatial Distributions
Summary

9 DOUBLE SAMPLING

Linear Regression Double Sampling Ratio Double Sampling Case Study Summary

10 LOCATING HOT SPOTS

Determining Grid Spacing
Size of Hot Spot Likely to be Hit
Probability of Not Hitting a Hot Spot
Taking Prior Information into Account
Probability that a Hot Spot Exists When None Has Been Found
Choosing the Consumer's Risk
Summary

11 QUANTILES, PROPORTIONS, AND MEANS

Basic Concepts
Estimating Quantiles (Percentiles)
Confidence Limits for Quantiles
Estimating Proportions
Two-Sided Confidence Limits for the Mean

One-Sided Confidence Limits for the Mean

Approximate Confidence Limits for the Mean

Alternative Estimators for the Mean and Standard Deviation

Nonparametric Estimators of Quantiles

Nonparametric Confidence Limits for Quantiles

Nonparametric Confidence Limits for Proportions

Confidence Limits when Data are Correlated

Rank Van Neumann Test for Serial Correlation

Data Transformations

Summary

12 SKEWED DISTRIBUTIONS AND GOODNESS-OF-FIT TESTS

Lognormal Distribution

Weibull, Gamma, and Beta Distributions

Goodness-of-Fit Tests

Summary

13 CHARACTERIZING LOGNORMAL POPULATIONS

Estimating the Mean and Variance

Confidence Limits for the Mean

Estimating the Median

Confidence Limits for the Median

Choosing *n* for Estimating the Median

Estimating Quantiles

Summary

14 ESTIMATING THE MEAN AND VARIANCE FROM CENSORED DATA SETS

Data Near Detection Limits

Estimators of the Mean and Variance

Two-Parameter Lognormal Distribution

Three-Parameter Lognormal Distribution

Summary

15 OUTLIER DETECTION AND CONTROL CHARTS

Data Screening and Validation

Treatment of Outliers

Rosner's Test for Detecting up to k Outliers

Detecting Outliers in Correlated Variables

Other Outlier Tests

Control Charts

Summary

16 DETECTING AND ESTIMATING TRENDS

Types of Trends

Statistical Complexities

Methods

Mann-Kendall Test

Sen's Nonparametric Estimator of Slope

Case Study

Summary .

17 TRENDS AND SEASONALITY

Seasonal Kendall Test

Seasonal Kendall Slope Estimator

Homogeneity of Trends in Different Seasons

Sen's Test for Trend

Testing for Global Trends

Summary

18 COMPARING POPULATIONS

Tests Using Paired Data Independent Data Sets

Summary

APPENDIX A: STATISTICAL TABLES

APPENDIX B: TREND

SYMBOLS

GLOSSARY

BIBLIOGRAPHY

INDEX

Reference No.: 013

Holme, N.A., and A.D. McIntyre. 1984. Methods for the Study of Marine Benthos. Blackwell Scientific Publishers, Oxford.					
Media in which	methods can be used:	☐ Water	Sediment	✓ Biota	
Keywords:	Biological characterization, sampling				

Abstract

The object of this handbook is to indicate and evaluate the equipment and techniques which are at present in general use for studying marine benthos, and to provide a comprehensive reference list to relevant publications. While it is primarily intended as an aid to those approaching the field for the first time, it is hoped that some sections will be of use to established workers, and that the existence of this volume may help to produce a degree of uniformity in the collection and treatment of material and in the presentation of results, which will make data from laboratories in different parts of the world more readily comparable.

This handbook deals primarily with the sampling of sediments and their fauna, from the intertidal region to the deep sea. The division into macrofauna and meiofauna has been used as convenient way of separating the fauna into two size groups, which for the most part require different sampling and processing techniques, the division being made between those animals passing, and those retained on, a sieve of about 0.5 mm mesh.

Macrofauna here comprises mainly the infauna of compacted sediments. The epifauna of hard bottoms and the active epifauna, including bottom fish, are less fully treated. Meiofauna is taken to include mainly the smaller metazoans: protozoans and organisms of bacterial size comprising the microfauna are referred to only briefly. Study of the phytobenthos required special techniques where the sampling of different habitats and measurements of primary production by benthic plants are considered. [extracted from document]

- 1 INTRODUCTION
- 2 POSITION FIXING
- 3 MEASUREMENT OF THE PHYSICAL AND CHEMICAL ENVIRONMENT
- 4 PHOTOGRAPHY AND TELEVISION
- 5 DIVING
- 6 MACROFAUNA SAMPLING
- 7 MEIOFAUNA AND MICROFAUNA SAMPLING
- 8 EFFICIENCY OF BENTHOS SAMPLING GEAR
- 9 AIDS AND METHODS FOR WORKING BENTHOS SAMPLERS
- 10 TREATMENT AND SORTING OF SAMPLES
- 11 PHYTOBENTHOS SAMPLING AND ESTIMATION OF PRIMARY PRODUCTION
- 12 ENERGY FLOW MEASUREMENTS
- APPENDIX 1: WORKING DRAWING OF DREDGE, ANCHOR DREDGE, AGASSIZ TRAWL, RILEY PUSH NET, BUTLER CORER
- APPENDIX 2: LIST OF SUPPLIERS
- APPENDIX 3: MEASUREMENTS

GENERAL REFERENCES

REFERENCES

INDEX

Reference No.: 014

Ingersoll, C.G., and M.K. Nelson. 1990. Testing Sediment Toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera). Aquatic Toxicology and Risk Assessment: 13th Volume, ASTM STP 1096. Eds: W.G. Landis and W. H. van der Schalie. American Society for Testing and Materials, Philadelphia. pp. 93-109.

Media in which methods can be used:

Water

Sediment

Biota

Keywords:

Sediment quality, metals, PCBs, PAHs, toxicity/bioassay

Abstract

Methods for testing the toxicity of whole sediments are described for the amphipod *Hyalella azteca* and the midge *Chironomus riparius*. Amphipod tests (static and flow-through) start with juvenile (≤ third instar) and continue up to 29 days until reproductive maturation. Flow-through tests with the midge start with the first instar larvae (<24 hours old) and continue up to 29 days through adult emergence. Data obtained from these laboratory exposures can be used to assess the effects of contaminants in sediments on survival, growth, or emergence of amphipods and midges. The methods were used to assess the potential toxicity of field-collected contaminated sediment from two sites in Waukegan Harbor, IL, an inlet of Lake Michigan contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic compounds (PACs), and metals; and a single site at Homer Lake, a small recreational lake in the agricultural region of central Illinois. Survival of both species was reduced after short-term (10- to 13-days) and long-term (29 days) exposure to contaminated sediment. In addition, sublethal effects were indicated by reduced growth of amphipods and a delay in emergence of adult midges. [copied from document]

Contact: (215) 299-5585

1 INTRODUCTION

2 PROCEDURE

Culturing Sediment Collection, Handling, and Storage Toxicity Tests

Biological Data

Water Chemistry and Sediment Analyses

Data Analysis and Statistics

3 RESULTS

Water Chemistry and Sediment Characteristics Toxicity Tests

- 4 DISCUSSION
- 5 REFERENCES

	n B. 1991. <i>A Compilation</i> uality Control Board, Cen			lifornia Regiona
Media in whic	h methods can be used:	✓ Water	Sediment	Biota
Keywords:	Water quality, organics turbidity, PAHs, PCBs, management			

Abstract

This report was developed to assist the staff of the California Regional Water Quality Boards to select water quality goals for water bodies under their jurisdictions. Recently promulgated drinking water maximum contaminated levels (MCLs) and MCL goals from U.S. EPA, new and revised health advisories and cancer risk estimated from U.S. EPA, and numerical water quality objectives from the State of California *Inland Surface Water Plan* and *Enclosed Bays and Estuaries Plan* are included.

This manual is divided into six sections:

- · Selecting Water Quality Goals
- · Cross Reference
- Water Quality Goals inorganic constituents
- · Water Quality Goals organic constituents
- Footnotes
- · References

Selecting Water Quality Goals describes the process by which numerical values for water quality parameters and constituents may be selected to protect beneficial uses of the ground and surface waters of California.

The Cross Reference provides a list of the chemical constituents and parameters for which numerical limits are contained in the Water Quality Goals sections. Many chemical constituents are commonly referred to by more than one name.

The next two sections contain numerical water quality goals. These two sections are each divided into four subsections, which provide numerical values protective of:

- · human health and welfare
- agricultural use, health & welfare, and freshwater aquatic life
- health & aquatic life -- inland surface waters and enclosed bays and estuaries
- marine resources

Many listings in these sections are followed by footnotes in parentheses.

References for the numerical water quality goals are provided, divided by topics which correspond to column headings in the Water Quality Goals tables.

[extracted from document]

Contact: (916) 361-5600

- 1 SELECTING WATER QUALITY GOALS
- 2 CROSS REFERENCE OF CHEMICAL NAMES
- 3 WATER QUALITY GOALS INORGANIC CONSTITUENTS

Human Health and Welfare

Agricultural Use, Health and Welfare, and Freshwater Aquatic Life

Health and Aquatic Life - Inland Surface Waters and Enclosed Bays and Estuaries

Marine Resources

4 WATER QUALITY GOALS - ORGANIC CONSTITUENTS

Human Health and Welfare

Agricultural Use, Health and Welfare, and Freshwater Aquatic Life

Health and Aquatic Life - Inland Surface Waters and Enclosed Bays and Estuaries

Marine Resources

- 5 FOOTNOTES
- 6 REFERENCES

Maryland Department of the Environment. 1993. Guidance for the Analysis of Water Quality Trends in Chesapeake Bay. Prepared by the Maryland Department of the Environment (by R. Eskin et al.) for the Monitoring Subcommittee of the Chesapeake Bay Program, Baltimore, MD. pp. 46.

Media in which methods can be used:	✓ Water	Sediment	Biota

Keywords: Water quality, data management/analysis

Abstract

A fundamental objective of the Chesapeake Bay water quality monitoring program is to detect trends or changes in the system. This is necessary to determine the effectiveness of pollution control actions as well as to detect changes that could indicate deteriorating conditions.

Environmental data typically have characteristics such as temporal variability, spatial heterogeneity, and measurement error which present problems when these data are analyzed. Compounding these problems is the long-term nature of trend detection which often means patching together a decade or more in investigations by several principal investigators, analytical laboratories, and managing agencies.

To assist in the continuing data analysis to measure progress in the Bay restoration, the Chesapeake Bay Program Monitoring Subcommittee asked its Data Analysis Workgroup to prepare this document to help guide data analysts through the process of analyzing trends in water quality data. The intent of this document is to help analysts reach technically sound conclusions and interpretations through their trend analysis that will help support management decisions. This guidance is also intended to foster a consistent approach to trend analyses among the various investigators and jurisdictions involved in the monitoring and analysis of Chesapeake Bay water quality information. This is more critical now than ever before as the various jurisdictions charges with the responsibility of restoring the Bay work together in developing management solutions. To that end, it is hoped that this report will play a role in guiding some of the analyses required to evaluate progress in the Bay restoration and provide consistent, interpretable, and useful data to water quality managers.

The scope of this report is limited to water quality data, although many of the principles can be used for other types of information. The reader is assumed to be familiar with estuarine water quality, basic statistical analysis, and environmental management. This guidance is generic since the range of variables, data availability, and long-term management actions, make it practically impossible to provide an approach that will work for all situations. By following this guidance, tailored to the needs and availability of data for a particular situation, the analyst should be able to avoid many of the problems that can undermine such analyses, or at least understand the limits and assumptions attendant to the conclusions. [extracted from document]

Contact: (410) 631-3681

1 INTRODUCTION

2 ANALYTICAL OBJECTIVES

Hypotheses for Development Choosing Parameters for Analysis

3 DATA REVIEW AND ASSEMBLY

Identification of Potential Data Sets for Analysis of Trends and Their Documentation

Review of Field and Laboratory Methods

Examination of Quality Assurance/Quality Control Information

Data Inspection and Characterization

Identification of Outliers

Acceptance of Data Sets

References

4 DATA ANALYSIS

Selection of Appropriate Spatial and Temporal Scales

Spatial Resolution

Temporal Resolution

Exploratory Data Analysis

Characteristics of the Data

Graphical and Other Exploratory Techniques

Confirmatory Data Analysis

Data Characteristics

Distribution

Censoring

Step vs. Monotonic Trend

Unequal Variances

Seasonality

Persistence

Missing Data

Flow Adjustment

Power and Robustness

Confirmatory Tests

Season Kendall

Van Belle and Hughes Intrablock Tests

Other Possibilities

Mann-Kendall

Mann-Kendall with Correction for Serial Dependence

Seasonal Kendall with Correction for Serial Dependence

Van Belle & Hughes Intrablock Test with Correction for Serial Dependence References

5 DATA INTERPRETATION

6 ANNOTATED BIBLIOGRAPHY

Primary References
Secondary References
References for Multivariate and Intervention Analysis
Books

7 BIBLIOGRAPHY OF TREND DETECTION SOFTWARE DETECT & EXCEED

SAS Statistics & ETS

McLeod-Hipel Time Series Package

Attachment 1: Summary of DAITS Program and Issues

	and S.D. MacKnight. 199 CRC Press, Boca Raton, I		echniques for Aquatic Sec	diments Sampling
Media in whic	h methods can be used:	☐ Water	✓ Sediment	Biota
Keywords:	Sediment quality, samp	oling		
Abstract				

Recently, contaminated sediments in rivers, lakes, and oceans have become a world-wide issue. It has been shown that sediment-associated contaminants can be transported by resuspension of sediment particles, may accumulate in the food chain or affect the health of biota and water quality in aquatic environment.

Assessment of impact of contaminated sediments on aquatic environment require collection of sediment samples to adequately define the physical and chemical characteristics of the sediments, transport of sediment-associated contaminants by resuspension of sediment particles or migration through sediment pore water, and test the effects of contaminated sediments on biota.

Sediment characterization plays an important role in many projects. These projects have been carried out for a wide variety of reasons, such as testing of scientific hypotheses, survey of environmental conditions, evaluation of fish habitats, or construction involving sediment removal or displacement. Adequate and representative characterization is a function of both sample collection and analyses. No matter how much care is taken in laboratory analyses, such factors as improperly located sampling sites, collection of inadequate number of quality of samples, and inappropriate sample handling can generate false information about the sediment process.

At present, there is no comprehensive monograph on sampling of bottom and suspended sediments and sediment pore water, and on handling of recovered samples prior to physico-chemical analyses and other tests. This book was written to provide the essential background information on these subjects to those interested in defining the physical and chemical characteristics of aquatic sediments and effects of contaminated sediments on aquatic ecosystems.

[extracted from document]

- 1 INTRODUCTION
- 2 PROJECT REVIEW
- 3 SELECTION OF BOTTOM SEDIMENT SAMPLING STATIONS
- 4 BOTTOM SEDIMENT SAMPLING
- 5 SAMPLING THE SETTLING AND SUSPENDED PARTICULATE MATTER
- 6 SEDIMENT SAMPLE HANDLING AND PROCESSING
- 7 SAMPLING SEDIMENT PORE WATER

INDEX

Reference No.: 018

Mueller, W., and D. Smith. 1992. Compilation of E.P.A.'s Sampling and Analytical Methods. Edited by L.H. Keith. Lewis Publishers, Chelsea, MI.				
Media in which	methods can be used:	✓ Water	✓ Sediment	Biota
Keywords:	Water quality, sediment q PCBs, PAHs	uality, sampling, me	tals, inorganics, organic	es, pesticides,

Abstract

There is an increasing number of analytes and corresponding methods for measuring them in the environment, and this often makes selection of the most appropriate methods difficult. The objective of this database is to help EPA contractors and other researchers to select rapidly and easily the most appropriate methods of sampling and analysis for a particular situation without the necessity of becoming an expert in the use of the methods or without searching through many volumes of published EPA methods.

The database is commercial adaption and expansion of a d-Base III database developed at EPA's Risk Reduction Engineering Laboratory. More than 650 method/analyte summaries are included in the 3-volume, printed publication or in a DOS-compatible database file on eight diskettes.

However, not all analytes are covered. While many of the semivolatile methods are covered, they are not as completely addressed as the volatile (purgeable) compounds. [extracted from document]

- 1 CHLORINATED ALIPHATIC VOLATILE ORGANIC COMPOUNDS
- 2 OTHER HALOGENATED VOLATILE ORGANIC COMPOUNDS
- 3 NONHALOGENATED VOLATILE ORGANIC COMPOUNDS
- 4 SEMIVOLATILE ORGANIC COMPOUNDS
- 5 PESTICIDES, HERBICIDES, PCBS, DIOXINS, AND FURANS
- 6 ELEMENTS
- 7 WATER QUALITY PARAMETERS
- 8 ABBREVIATIONS
- 9 DEFINITIONS

Reference No.: 019

National Parks Service. 1991. Plant Toxicity Testing with Sediment and Marsh Soils. Prepared by G. Walsh, U.S. Department of the Interior, National Parks Service, Water Resources Division, Fort Collins, CO. pp. 133. Technical Report NPS/NRWRD/NRTR-91/03.

Media in which methods can be used:

Water

✓ Sediment

✓ Biota

Keywords:

Sediment quality, toxicity/bioassay

Abstract

A short account of the principles and practices of toxicity testing with aquatic plants and sediments is given. Aquatic (wetland, marsh) plants have been shown to be sensitive to toxicants in natural and synthetic sediments, and advantages and disadvantages of each type of sediment in toxicity testing are described. Toxicological studies with Echinochola crusgalli, Sesbania macrocarpa, Spartina alterniflora are described, but other experimental species need to be adapted for use in impact analysis and risk assessment. It is concluded, after comparison of results from seed germination, hydroponic, and sediment tests, that the latter best simulates the unique field conditions under which plants are exposed to pollutants.

This report is designed as an introduction to the subject. Its basic assumptions are that structure and functions of wetlands can be affected by toxicants in sediments and that laboratory tests can detect possible or probable injury to aquatic plant under specific circumstances. The methods given here may be modified or used directly for routine toxicity testing or for experimental studies in which environmental variables are manipulated.

[copied from document]

Contact: (303) 221-8311

INTRODUCTION

1 PRINCIPLES OF SEDIMENT TOXICITY TESTINGS WITH VASCULAR PLANTS

Sediment Properties
Plant Requirements
Choice of Test Species
Methods of Toxicity Testing with Sediment/Plant Systems

- 2 DISCUSSION
- 3 LITERATURE CITED
- APPENDIX 1: TOXICITY TESTS OF EFFLUENTS WITH MARCH PLANTS IN WATER AND SEDIMENT
- APPENDIX 2: USE OF MARSH PLANTS FOR TOXICITY TESTING OF WATER AND SEDIMENT
- APPENDIX 3: RESPONSES OF WETLAND PLANTS TO EFFLUENTS IN WATER AND SEDIMENT
- APPENDIX 4: ARTIFICIAL SEDIMENTS FOR USE IN TESTS WITH WETLAND PLANTS
- APPENDIX 5: SYNTHETIC SUBSTRATA FOR PROPAGATION AND TESTING OF SOIL AND SEDIMENT ORGANISMS
- APPENDIX 6: SYNTHETIC SEDIMENTS: A TOOL FOR RESEARCH

NOAA. 1986. National Status and Trends Program for Marine Environmental Quality Benthic Surveillance Project: Cycle III Field Manual. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, Maryland. pp. 32. Technical Memorandum NOS OMA 28.

Media in which	methods can be used:	✓ Water	✓ Sediment	Biota
Keywords:	Water quality, sediment	quality, sampling	g, QA/QC, tissue analysis	

Abstract

The Benthic Surveillance Project (BSP) is a major component of NOAA's National Status and Trends (NS&T) Program. It is a collaborative effort between the Ocean Assessment Division (OAD) of the National Ocean Service and the National Marine Fisheries Service (NMFS).

The major goals of the Project are to describe present levels of chemical contamination in surficial sediments and bottom-feeding fishes at key sites in the nation's estuaries and nearshore zone, and to determine the incidence of disease in these benthic species.

Because this is a national program conducted by scientific teams from various laboratories around the country, it is important that sample collection and processing procedures be standardized as much as possible. This manual provides detailed information on the required collection and processing procedures. It is based both on the files experience gained by NMFS personnel during Cycles I and II, and the general expertise of OAD and NMFS scientists in conducting environmental quality surveys. The protocols in this manual are followed by all Benthic Surveillance Project participants. As data from the Project are evaluated, the procedures, specified herein, will be modified and improved. [extracted from document]

Contact: (301) 713-3034

- 1 INTRODUCTION
- 2 GENERAL FIELD SAMPLING PROCEDURES
- 3 COLLECTION OF FISH
- 4 PROCEDURE FOR COLLECTING FISH TISSUE SAMPLES FOR THE NATIONAL STATUS AND TRENDS SPECIMEN BANK
- 5 COLLECTION OF SEDIMENT
- 6 PROCEDURE FOR COLLECTING SEDIMENT SAMPLES FOR THE NATIONAL STATUS AND TRENDS SPECIMEN BANK
- 7 PACKING AND SHIPMENT OF NATIONAL STATUS AND TRENDS SPECIMEN BANK SAMPLES
- 8 HANDLING OF LIQUID NITROGEN

ATTACHMENTS

NOAA. 1987. National Status and Trends Program for Marine Environmental Quality Benthic Surveillance Project: Specimen Bank Project: Field Manual. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, Maryland. pp. 43. Technical Memorandum NOS OMA 37.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, sampling, QA/QC, tissue analysis

Abstract

In 1980, a pilot National Environmental Specimen Bank Program was established in the United States at the National Bureau of Standards (NBS), sponsored in part by the U.S. Environmental Protection Agency. Since then, other Federal agencies, including the Food and Drug Administration, Department of Agriculture, National Cancer Institute, and the National Oceanic and Atmospheric Administration (NOAA), represented by the Ocean Assessments Division, have joined in the specimen banking activities at NBS.

In fiscal year 1984, NOAA's Ocean Assessments Division initiated a new program, called the National Status and Trends (NS&T) Program, within which activities are being undertaken to quantify the current status and long-term temporal and spatial trends of key contaminant concentrations and biological indicators of contaminant effects in the nation's coastal and estuarine environments.

One of the elements of the NS&T Program is the archiving of samples for retrospective analyses. The methods of collection, preparation, and storage of samples for a specimen banking program are critical to the scientific accuracy of the analysis and comparison of these data. The methods used in the specimen banking component of NOAA's National Status and Trends Program are described in this report. Also summarized are the National Status and Trends Program specimen banking operations for its Benthic Surveillance and Mussel Watch component for fiscal years 1985, 1986, and 1987. Protocols used for preparation and storage of samples are also described in detail. [extracted from document]

Contact: (301) 713-3034

- 1 INTRODUCTION
- 2 CRYOGENIC STORAGE FACILITY
- 3 BENTHIC SURVEILLANCE SPECIMEN BANKING PROTOCOLS

Fish Tissue Samples

Sample Selection

Cleaning of Sampling Instruments

Stage I. Sample Preparation (Fish Liver and Muscle Tissue)

Stage II. Fish Dissection

Sediment Specimens

Sediment Collection

Stage I. Sediment Collection

Stage II. Sediment Processing

Stage III. Sample Packaging and Shipment

4 MUSSEL WATCH SPECIMEN BANKING PROTOCOLS

Bivalve Specimens

Sample Selection

Stage I. Sample Collection and Sorting (Bivalves)

Stage II. Bivalve Processing

Sediment Specimens

Sample Selection

Stage I. Sediment Collection

Stage II. Sediment Processing

Stage III. Sample Packaging and Shipment

- 5 SAMPLE HOMOGENIZATION AND ANALYSIS
- 6 PROCEDURE FOR COLLECTING SEDIMENT SAMPLES FOR THE NATIONAL STATUS AND TRENDS SPECIMEN BANK
- 7 CONCLUSION

REFERENCES

APPENDIX A

APPENDIX B

NOAA. 1988. Standard Analytical Procedures of the NOAA National Analytical Facility, 1988. New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA. NOAA Technical Memorandum NMFS F/NWC-153.

Media in which methods can be used:	Water	✓ Sediment	Biota

Keywords: Sediment quality, tissue analysis, organics, PAHs, PCBs

Abstract

The Environmental Conservation (EC) Division of the Northwest and Alaska Fisheries Center conducts broad-ranging research into the nature and extent of pollution and its effects on marine and estuarine fish and their habitats. While functioning within the National Marine Fisheries Service, the EC Division maintains a strong research relationship with other units of NOAA such as the Office of Oceanography and Marine Assessment of the National Ocean Service. NOAA's National Status and Trends (NS&T) Program is a good example. For 4 years the EC Division has participated in the NS&T Program, which monitors marine environmental quality at approximately 200 sites along the nation's coastlines.

Wherever possible, standard methods are used to minimize the analytical variability among the participating laboratories. Many of these procedures, such as those for aromatic hydrocarbons and chlorinated hydrocarbons in sediments and tissues, are relatively laborious. To expedite these analyses, the EC Division's National Analytical Facility has developed a new instrumental method for the cleanup of sample extracts. The new method features (1) cleanup as effective as by former methods, (2) better precision, (3) less time required, (4) capability of monitoring the chromatographic conditions, (5) capability of being automated, and (6) less highly pure solvent required.

Through this Technical Memorandum, the new cleanup and revised extraction procedures are being made available to NS&T laboratories. A rapid, simple HPLC method, using a size-exclusion column is described. This method was developed to improve on the gravity-flow method by increasing efficiency, reducing costs, automating the analyses, and monitoring chromatographic conditions. This laboratory manual should also be useful to other federal, state, and local environmental programs which analyze for organic chemicals in sediments and organisms. These new procedures supersede Sections 7, 8, 10, and 11 of NOAA Technical Memorandum NMFS F/NWC-92 (MacLeod et al., 1985).

References:

MacLeod, W.D., Jr., D.W. Brown, A.J. Friedman, D.G. Burrows, O. Maynes, R.W. Pearce, C.A. Wigren, and R.G. Bogar (1985). Standard analytical procedures of the NOAA National Analytical Facility, 1985-86: extractable toxic organic compounds. Second Edition. NOAA Tech. Memo. NMFS F/NWC-92. NOAA/NMFS/NWAFC, Seattle, WA. 121 pp.

[extracted from document]

Contact: (206) 860-3200

1 INTRODUCTION

Materials
Sediment Extraction
Tissue Extraction
HPLC Cleanup

2 LITERATURE CITED

APPENDIX A: AUTOSAMPLER AND FRACTION COLLECTOR PROGRAMS

APPENDIX B: OPERATION OF THE HPLC SYSTEM

Reference No.: 023

NOAA. 1992. Standard and Reference Materials for Marine Science. 3rd ed. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, Maryland. Technical Memorandum NOS ORCA 68.

Media in which methods can be used:

Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, nutrients, metals, inorganics, organics, pesticides,

PCBs, PAHs, tissue analysis, QA/QC

Abstract

This is the third edition of the catalog of reference materials suited for use in marine science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists close to 2,000 reference materials from sixteen producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds. This catalog is being published independently by both NOAA and IOC/UNEP and is available from NOAA/NOS/ORCA in electronic form. [copied from document]

Contact (301) 713-3034

- 1 INTRODUCTION
- 2 REFERENCE MATERIALS SOURCES, TYPES, AND USE

Sources

Bureau of Analyzed Samples Ltd.

Canada Centre for Mineral and Energy Technology

Community Bureau of Reference

International Atomic Energy Agency

Instituto de Pesquisas Tecnológicas

Laboratory of the Government Chemist

National Institute for Environmental Studies

National Institute of Standards and Technology

National Research Center for Certified Reference Materials

National Research Council of Canada

National Water Research Institute

Ocean Scientific International Led.

Sagami Chemical Research Center

South Africa Bureau of Standards

U.S. Environmental Protection Agency

U.S. Geological Survey

Types

Use

- 3 SOURCES OF NON-CERTIFIED MATERIALS
- 4 LITERATURE ON QUALITY ASSURANCE AND REFERENCE MATERIALS

NIST

ISO/REMCO

UNEP

- 5 ACKNOWLEDGMENTS
- 6 REFERENCES
- 7 ASHES

CRM 038, Coal Fly Ash

CRM 176, City Waste Incineration Ash

EPA SRS001--100, EPA CRADA Fly Ash

EPA SRS019-50 and SRS203-225, EPA CRADA Municipal Incinerator Ashes

GBW 08401 - 08402, Coal Fly Ashes

NIES 8, Vehicle Exhaust Particulates

SRM 1633a, Trace Elements in Coal Fly Ash

SRM 1648, Urban Particulate Matter

SRM 1649, Urban Dust/Organics

SRM 1650, Diesel Particulate Matter

SRM 2689 - 2691, Coal Fly Ashes

8 GASES

GBW 08101 through 08132, Gases in Nitrogen

GBW 08119 through 08123, Gases in Air or Argon

GBW 08201 through 08205, Gas Permeation Tubes

SRM 1625 through 1629a, Gas Permeation Tubes

SRM 1658a through 2751 Gases in Air

SRM 1661a through 2745. Gases in Nitrogen

9 INSTRUMENTAL PERFORMANCE

A13-01 - A13-14, Spectrochemical Materials

CLB-1 - CLB-2, Mixtures in Iso-octane of Individual Chlorinated Biphenyl (PCB) Compounds

CRM 034 through CRM 183, Organic Compounds for Elemental Analysis

CRM 046 through CRM 370, Polycyclic Aromatic Hydrocarbons

CRM 365, Polychlorinated Biphenyls in Iso-Octane

CSK-KIO3, Potassium Iodate

DACS-1, Domoic Acid

EPA C-027 through C-158, EPA CRADA Multicomponent Standards

EPA CDCB-006 through CPCB-490, EPA CRADA Polychlorinated Biphenyl Congeners

EPA CR-0020 through CR-7120, EPA CRADA Pesticides

EPA NSI 0001 - 1211, EPA CRADA Toxic and Hazardous Materials Repository

EPA Organic QC Samples, EPA CRADA Organic QC Samples

EPA QCS Inorganic Solutions, EPA CRADA Inorganic QC Samples

EPA QCS Nutrient Solutions, EPA CRADA Nutrient QC Samples

EPA QCS Phenolics Solutions, EPA CRADA Phenolics QC Samples

GBW 06104 - 06408, Organic Compounds

GBW 07501 - 07514, Minerals for Electron Microprobe Analyses

GBW 07701 - 07711, Synthetic Silicates for Spectral Analyses

GBW 07712 - 07720, Synthetic Limestones for Spectral Analyses

GBW 08601 - 08609, Elements in Water

P11-01 - P18-01, Reference Materials for Pesticide Analysis

RM 8464 - 8469, Pesticides

SRM 141c through 2144, Microchemical Elemental Analysis

SRM 185g through 2192, pH and pD Calibration Solutions

SRM 610 - 617, Trace Elements in Glass Matrices

SRM 640b, Silicon Powder 20/d-Spacing Standard for X-ray Diffraction

ARM 647a, X-ray Powder Diffraction Intensity Set

SRM 675, Low 20 (Large d-Spacing) Standard for X-ray Powder Diffraction

SRM 676, Alumina Internal Standard

SRM 869, Column Selectivity Test Mixture for Liquid Chromatography

SRM 930D and 1930, Glass Filters for Spectrophotometry

SRM 931d, Liquid Filters

SRM 935a - 936, Potassium Dichromate and Quinine Sulfate Dihydrate

SRM 1491, Aromatic Hydrocarbons in Hexane/Toluene

SRM 1492, Chlorinated Pesticides in Hexane

SRM 1543, GC/MS System Reference Standard

SRM 1583, Chlorinated Pesticides in 2,2,4-trimethylpentane

SRM 1584, Priority Pollutant Phenols in Methanol

SRM 1585, Chlorinated Biphenyls in 2,2,4-trimethylpentane

SRM 1586, Isotopically Labeled and Unlabeled Priority Pollutants in Methanol

SRM 1587, Nitrated Polycyclic Aromatic Hydrocarbons in Methanol

SRM 1596, Dinitropyrene Isomers and 1-Nitropyrene in Methylene Chloride

SRM 1614, Dioxin

SRM 1639, Halocarbons for Water Analysis

SRM 1641b, Mercury in Water

SRM 1643c, Trace Elements in Water

SRM 1644, Generator Columns for Polynuclear Aromatic Hydrocarbons

SRM 1647b, Priority Pollutant Polynuclear Aromatic Hydrocarbons

SRM 1871 - 1873, Glasses for Microscopic Analysis

SRM 2009a, Dydinium Glass Filter

SRM 2032, Potassium Iodide

SRM 2033, Potassium Iodide with Attenuator

SRM 2034, Holmium Oxide Solution Wavelength Standard

SRM 2069b, SEM Performance Standard

SRM 2201 - 2203, Sodium Chloride, Potassium Chloride, Potassium Fluoride for Ion-Selective Electrodes

SRM 2260, Aromatic Hydrocarbons in Toluene

SRM 2261, Chlorinate Pesticides in Hexane

SRM 3101 - 3174, Spectrometric Standard Solutions

SRM 3181 - 3186, Anion Standard Solutions

SRM 4226B through 4949B, Alpha-Particle, Beta-Particle, Gamma-Ray, and Electron Capture Solutions

SRM 4400LN through 4417LK, Radiopharmaceuticals

10 OILS

CRM 349, Chlorobiphenyls In Cod Liver Oil

CRM 350, Chlorobiphenyls In Mackerel Oil

EPA SRS950 - SRS954, EPA CRADA Oils

RM 8505, Vanadium In Crude Oil

SRM 1580, Organics In Shale Oil

SRM 1581, Polychlorinated Biphenyls In Oil

SRM 1582, Petroleum Crude Oil

SRM 1588, Organics In Cod Liver Oil

SRM 1618, Vanadium And Nickel In Residual Fuel Oil

SRM 1634b, Trace Elements In Fuel Oil

11 PHYSICAL PROPERTIES

CRM 066 through 132, Particle Size Distribution

CRM 165 - 167, Latex Spheres of Certified Size

CRM 169 - 175, Certified Surface Area

M11-01 - M11-08, Surface Area

SRM 475 - 476, Optical Microscope Linewidth Measurement Standards

SRM 484f, Scanning Electron Microscope Magnification Standard

SRM 659, Particle Size Distribution Standard For Sedigraph Calibration

SRM 1003b through 1019a, Glass Spheres And Beads

SRM 1690 through 1965, Polystyrene Spheres

SRM 2106 - 2107, Color

SRM 2135b, Depth Profiling

12 ROCKS

AGV-1, Andesite

BCS-CRM 368, Dolomite

BCS-CRM 393, Limestone

BCS-CRM 395, Bauxite

BHVO-1, Basalt

BIR-1, Icelandic Basalt

DNC-1, Dolerite

G-2, Granite

GBW 07249, Polymetallic Nodule

GSR-1, Biotite Granite

GSR-2, Hornblende Andesite

GSR-3, Olivine Basalt

GSR-4, Sandstone

GSR-5, Shale

GSR-6, Carbonate Rock

IPT 28, Clay

IPT 32, Plastic Clay

IPT 35, Calcitic Limestone

IPT 42, Clay

IPT 44, Limestone

IPT 48, Dolomitic Limestone

IPT 61 and 62, Glass Sands

MGR-1, Gabbro

Nod-A-1, Manganese Nodule

Nod-P-1, Manganese Nodule

QLO-1, Quartz Latite

RGM-1, Rhyolite

SARM 1, Granite

SARM 2, Syenite

SARM 3, Lujaurite

SARM 4, Norite

SARM 5, Pyroxenite

SARM 6, Dunite

SARM 39, Kimberlite

SARM 40, Carbonatite

SARM 41, Carbonaceous Shale

SARM 43, Magnesite

SARM 44, Silliminate Schist

SARM 45, Kinzingite

SARM 47, Serpentinite

SARM 48, Fluorspar Granite

SARM 49, Quartz

SARM 50, Dolerite

SCo-1, Cody Shale

SDC-1, Mica Schist

SDO-1, Shale

SGR-1, Green River Shale

SRM 69b, Bauxite (Arkansas)

SRM 81a, Glass Sand

SRM 88b, Dolomitic Limestone

SRM 97b, Flint Clay

SRM 98b, Plastic Clay

SRM 120c, Florida Phosphate Rock

SRM 278, Obsidian Rock

SRM 600, Bauxite (Australian Darling Range)

SRM 688, Basalt Rock

SRM 696, Bauxite (Surinam)

SRM 697, Bauxite (Dominican)

SRM 698, Bauxite (Jamaican)

STM-1, Nepheline Syenite

SY-2 - SY-3, Syenites

W-2, Diabase

13 SEDIMENTS

BCSS-1, MESS-1, PACS-1 and BEST-1, Marine and Estuarine Sediments

CRM 277, Trace Elements in Estuarine Sediment

CRM 280, Trace Elements in Lake Sediment

CRM 320, Trace Elements in River Sediment

CS-1, HS-1 and HS-2, Polychlorinated Biphenyls in Marine Sediments

EC-1, Hamilton Harbour Sediment

EC-2, Lake Ontario Sediment

EC-3, Niagara River Plume Sediment

EC-4, Toronto Harbour Sediment

EC-5, Humber River Sediment

EC-6, Great Lakes Sediment

EC-7, Great Lakes Sediment

GBW 07309 - 07312, Stream Sediments

GBW 07313 Marine Sediment

GBW 08301, River Sediment

GSD-9, River Sediment

GSD-10, Stream Sediment

GSD-11, Stream Sediment

GSD-12, Stream Sediment

HR-1, Humber River Sediment

HS-3 - HS-6, Polycyclic Aromatic Hydrocarbons in Marine Sediments

IAEA-313 - IAEA-314, Stream Sediments

IAEA-357, Sediment from Coastal "Hot Spot"

IAEA-367, Sediment from the Pacific Ocean

IAEA-368, Sediment from the Pacific Ocean

LKSD-1 - LKSD-4, Lake Sediments

MAG-1, Marine Sediments

NIES 2, Pond Sediment

SARM 46 through 52, Stream Sediments

SD-M-2/TM, Marine Sediment

SD-N-2, Marine Sediment

SES-1, Estuarine Sediment Research Material for Polycyclic Aromatic Hydrocarbons

SL-1, Lake Sediment

SL-2, Lake Sediment

SRM 1646, Estuarine Sediment

SRM 1939, Polychlorinated Biphenyls in River Sediment A

SRM 1941, Organics in Marine Sediment

SRM 2704, Buffalo River Sediment

SRM 4350B, River Sediment

SRM 4354, Gyttja Lake Sediment

STSD-1 - STSD-4, Stream Sediments

SUD-1, Sudbury Sediment

TH-1. Toronto Harbour Sediment

TH-2, Great Lakes Sediment

WQB-1 - WQB-2, Lake Ontario Sediment

WQB-3, Great Lakes Sediments

14 SLUDGES

CRM 144 and 146, Sewage Sludges

CRM 176, Polychlorinated Biphenyls in Sewage Sludge

EPA SRS101-100, EPA CRADA API Separator Sludge

15 SOILS

CRM 141, Trace Element in a Calcareous Loam Soil

EPA SRS003-50, EPA CRADA Metals in Soil

EPA SRS103-100, EPA CRADA PAH Contaminated Soil

GBW 07401 - 07408, Soils

GBW 08302, Tibet Soil

GBW 08303, Polluted Farm Soil

GSS-1, Brown Soil

GSS-2, Chestnut Soil

GSS-3, Yellow-Brown Soil

GSS-4, Yellow Soil

GSS-5, Yellow-Red Soil

GSS-6, Yellow-Red Soil

GSS-7, Laterite

GSS-8, Loess

IAEA-312, Soil

SARM 42, Soil

SO-2 - SO-4, Soils

SOIL-6, Soil

SOIL-7, Soil

SRM 2709 - 2711

SRM 4353, Rocky Flats Soil

SRM 4355, Peruvian Soil

16 TISSUES

CRM 278, Trace Elements in Mussel Tissue

CRM 414, Trace Elements in Plankton

CRM 422, Trace Elements in Cod Muscle

DOLT-1, Dogfish Liver

DORM-1, Dogfish Muscle

EPA SRS903, EPA CRADA QCS Chlordane in Fish Tissue

GBW 08571, Mussel

GBW 08572, Prawn

IAEA-307, Sea Plant

IAEA-308, Mediterranean Seaweeds

IAEA-350, Tuna Homogenate

IAEA-351, Tuna Homogenate

IAEA-352, Tuna Homogenate

LUTS-1, Non-Defatted Lobster Hepatopancreas

MA-A-1/OC, Copepod Homogenate

MA-A-1/TM, Copepod Homogenate

MA-A-3/OC, Shrimp Homogenate

MA-B-3/OC, Lyophilised Fish Tissue

MA-B-3RN, Lyophilised Fish Tissue

MA-B-3/TM, Lyophilised Fish Tissue

MUS-1, Domoic Acid

NIES 9, Sargasso Seaweed

NIES 11, Fish Tissue

SRM 955a, Lead in Blood

SRM 1566a, Oyster Tissue

SRM 1577b, Bovine Liver

SRM 1598, Inorganic Constituents in Bovine Serum

SRM 1974, Organics in Mussel Tissue (Mytilus edulis)

TORT-1, Lobster Hepatopancreas

17 WATERS

CASS-2, Nearshore Seawater

CRM 403, Trace Elements in Seawater

CSK Nutrient Elements, CSK Nutrients in Seawater

IAEA-298, Pacific Ocean Water

IAPSO Standard Seawater, Standard Seawater for Conductivity Measurements

NASS-4, Open Ocean Seawater

ORMS-1, Riverine Water

SLAP, Water

SLEW-1, Estuarine Water

SLRS-2, River Water

SRM 2694a, Simulated Rainwater

VSMOW, Ocean Water

18 APPENDICES

Appendix I. Symbol, Atomic Number and Chemical Abstracts Service Registry Number of Elements

Appendix II. Alternate Names and Chemical Abstracts Service Registry Numbers of Organic Compounds

Appendix III. Selected Organic Compound Structures

19 INDICES

Index of Elements with Associated Reference Materials
Index of Isotopes with Associated Reference Materials
Index of Organic Compounds with Associated Reference Materials

NOAA. 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992, Volumes I-IV. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, Maryland. NOAA Technical Memorandum NOS ORCA 71.

Media in which methods can be used:

✓ Water

✓ Sediment

✔ Biota

Keywords:

Water quality, sediment quality, biological characterization, depth, tides, temperature, salinity, grain size, organics, PAHs, PCBs, total organic carbon, organotins, tissue analysis, pathogenic organisms, inorganics, metals, sampling, OA/OC. bioaccumulation, data analysis

Abstract

The quantification of environmental contaminants and their effects by the National Oceanic and Atmospheric Administration's national Status and Trends Program began in 1984. Polycyclic aromatic hydrocarbons, butyltins, polychlorinated biphenyls, DDTs and other chlorinated pesticides, trace and major elements, and a number of measures of contaminant effects are quantified in estuarine and coastal samples. There are two major monitoring components in this program, the National Benthic Surveillance Project which is responsible for quantification of contamination in fish tissue and sediments, and developing and implementing new methods to define the biological significance of environmental contamination, and the Mussel Watch Project, which monitors pollutant concentrations by quantifying contaminants in mollusk bivalves and sediments. Methods are described for sample collection, preparation, and quantification. The evolution of methods, method detection limits, and the Quality Assurance Project are also discussed.

This report consists of four volumes, of which three have been published. Volume I is not yet available. Each volume contains detailed descriptions of analytical methods and measurements as performed by the different laboratories participating in the National Status and Trends Program.

Volume II contains detailed descriptions of complementary methods used by cooperating laboratories participating in the NS&T Program for the determination of physical properties of the sampling site such as salinity and tidal horizon; ancillary parameters in sediments and tissues such as total organic carbon and percent dry weight; and histopahtological examination of tissues.

Volume III contains detailed descriptions of analytical methods used for the determination of major and trace elements in sediments and tissues by laboratories participating in the NS&T Program.

Volume IV contains detailed descriptions of the analytical methods used for the determination of trace organic compounds in sediments and tissues by laboratories participating in the NS&T Program.

The method of MacLeod et al. (1985) is placed first in this volume because all the NMFS and Battelle Ocean Sciences laboratories participating in the NS&T Program relied heavily upon it. Readers should note that the methods developed by MacLeod et al., (1985) are no longer used by NMFS laboratories participating in the NS&T Program and are not to be considered NOAA protocols for the quantification of organic contaminants.

References:

MacLeod, W.D., Jr., D.W. Brown, A.J. Friedman, D.G. Burrows, O. Maynes, R.W. Pearce, C.A. Wigren, and R.G. Bogar (1985). Standard analytical procedures of the NOAA National Analytical Facility, 1985-86: extractable toxic organic compounds. Second Edition. NOAA Tech. Memo. NMFS F/NWC-92. NOAA/NMFS/NWAFC, Seattle, WA. 121 pp.

[extracted from document]

Contact: (301) 713-3028

TABLE OF CONTENTS

VOLUME I - OVERVIEW AND SUMMARY OF METHODS

1 NOAA NATIONAL STATUS AND TRENDS PROGRAM DEVELOPMENT AND METHODS

Abstract

Introduction

Development of the NS&T Program

Selection of Elements and Compounds

Recommended Detection Limits

Analytical Definition of Detection Limits

Recommended Number of Replicated

Recommended Sample Matrices

Sediments

Bivalves

Fish

Other Species

Seawater

Sampling Procedures

National Benthic Surveillance Project

Site Designation

Sediments

Sediment Collection

Organic Sample Collection

Major and Trace Elements Sample Collection

Packaging

Tissue

Collection

Fish Dissection Environment Preparation

Fish Specimen Preparation

Onboard Laboratory Requirements for Dish Dissections

Tissue Dissection

Packaging

Mussel Watch

Site Designation

Sediments

Collection

East and West Coasts

Gulf Coast

Packaging

Tissues

Bivalve Mollusk Collections

East and West Coasts

```
Field Collection Changes
       Packaging
          East and West Coasts
               Organic Samples
               Major and Trace Element Samples
          Gulf Coast
     Ancillary Measurements
       Tidal Horizon
       Depth
       Perkinsus marinus
       Shell Size
       Radionuclide Samples
       Coprostanol and Clostridium perfringens
       Gonadal Index
       Temperature
       Salinity
Quality Assurance
  Approach
     Methodology
     Standard Reference and Control Materials
     Procedures and Standards
     Instrument Calibration
     Sample Quantification
     Method Detection Limits
     Precision
     Accuracy
  Control Samples
  Data Acceptability Criteria and Archival
  Intercomparison Exercises
  Quality Assurance Workshops
  Development of Standard Reference Materials
  NIST Trace Organic Exercises
  NRC Trace Element Exercises
Analytical Procedures
  Introduction
     Trace Organics
     Major and Trace Elements
  Discussion of Analyte Limitations
     Organics Analytes
       PCBs
          PCB Quantitation
          PCB Selection
```

Gulf Coast

PCB Coelutions PAHs Inorganic Analytes Thallium **Antimony** Selenium Tin **Analyte Additions** National Benthic Surveillance Project Analytical Methods Inorganic Analysis Sediments **NEFSC Sediment Elemental Analyses** SEFSC Sediment Elemental Analyses **NWFSC Sediment Elemental Analyses** Tissue **NEFSC Sediment Elemental Analyses** SEFSC Sediment Elemental Analyses **NWFSC Sediment Elemental Analyses** Organic Analyses General Methods for Sediments and Tissues Bile Liver Muscle Stomach Contents Sediments Mussel Watch Project Inorganic Analyses Battelle Sediment and Mollusk Elemental Analyses Sediment Analyses Tissue Analyses SAIC Sediment and Mollusk Elemental Analyses Sediment Analyses Tissue Analyses TAMU Sediment and Mollusk Elemental Analyses Sediment Analyses Tissue Analyses Organic Analyses Battelle and SAIC Sediment and Mollusk Elemental Analyses TAMU Sediment and Mollusk Elemental Analyses

Analytical Procedures for Other Parameters National Benthic Surveillance Project

Total Organic Carbon

Sediment

```
Moisture Content
       Particle Size
       Clostridium perfringens
       Coprostanol
     Tissue
       Tissue Dry Weight
       Bile
       Butyltins
       Otoliths
  Mussel Watch Project
     Sediment
       Total Organic and Carbonate Carbon
       Moisture Content
       Particle Size
       Clostridium perfringens
       Coprostanol
     Tissue
       Dry Weight
       Gonadal Index
          East and West Coasts
          Gulf Coast
       Butyltins
Gross Pathology
  National Benthic Surveillance Project
  Mussel Watch Project
Histopathology
  National Benthic Surveillance Project
     Liver
     Kidneys
     Gills
  Mussel Watch Project
Summary
Acknowledgments
References
```

VOLUME II - COMPREHENSIVE DESCRIPTIONS OF COMPLEMENTARY MEASUREMENTS

1 PROCEDURE FOR DETERMINING TIDAL HORIZON, 1986-1992

Abstract

Introduction

Equipment and Materials

Summary of Procedures

Determining Mean Low Water

Determining Tidal Horizon

Conclusion

2 PROCEDURE FOR MEASURING TEMPERATURE OF BOTTOM WATER

Abstract

Introduction

Equipment and Materials

Summary of Procedures

Portable SCT Meter

Digital Thermometer

Glass Mercury Thermometer

Quality Control

Procedural Calibrations

Factory Calibrations

Accuracy

Precision

Conclusions

3 PROCEDURE FOR MEASURING SALINITY IN BOTTOM WATER

Abstract

Introduction

Equipment and Materials

Equipment

Materials

Procedure

Portable Meter

Refractometer

Quality Control

Portable SCT Meter Calibration

Refractometer Calibration

Accuracy

Precision

Conclusions

4 HYDROGRAPHIC MEASUREMENTS

Abstract

Introduction

Apparatus and Materials

Equipment

Reagents

Sample Collection, Preservation, and Storage

Procedure

Conclusions

Reference

5 SEDIMENT GRAIN-SIZE ANALYSIS PROCEDURES FOLLOWED BY BATTELLE OCEAN SCIENCES, SCIENCE APPLICATIONS INTERNATIONAL CORPORATION, AND GEO PLAN, INC.

Abstract

Introduction

Equipment and Materials

Equipment and Supplies

Chemicals

Summary of Sediment Grain-Size Procedures, 1986

Sample Preparation

Pre-Determination of Beaker Tare Weights

Preparation of Dispersing Solution

Preparation of Sediment

Procedure

Wet-Sieving

Collection of Silt-Clay Fraction

Collection of Sand and Gravel Fraction

Determination of Weight Percent Distributions

Battelle Quality Control

Summary of Sediment Grain-Size Procedures, 1987

Summary of Sediment Grain-Size Procedures, 1988

Summary of Sediment Grain-Size Procedures, 1989

Summary of Sediment Grain-Size Procedures, 1990 and 1991

Conclusions

References

6 SEDIMENT GRAIN-SIZE ANALYSES

Abstract

Introduction

Apparatus and Materials

Sample Collection, Preservation, and Storage

Procedure

Preparation of Samples for Dry Sieving and Pipette Analysis Size Analysis of Sand/Gravel Fraction by Dry Sieving Analysis of Silt/Clay Sized Material by Settling

Calculations

Quality Control

Conclusions

References

7 SEDIMENT DRY WEIGHT DETERMINATION PROCEDURES FOLLOWED BY BATTELLE OCEAN SCIENCES

Abstract

Introduction

Equipment and Materials

Summary of Sediment Dry Weight Determination Method

Sediment Procedure

Dry Weight Calculation

Conclusion

Reference

8 DRY WEIGHT DETERMINATION OF SEDIMENTS

Abstract

Introduction

Apparatus and Materials

Procedure

Calculations

Quality Control

Conclusion

9 TISSUE DRY WEIGHT DETERMINATIONS PROCEDURES FOLLOWED BY BATTELLE OCEAN SCIENCES

Abstract

Introduction

Equipment and Materials

Summary of Tissue Dry Weight Determination Method

Tissue Procedure

Dry Weight Calculation

Conclusion

Reference

10 TOTAL ORGANIC CARBON AND CARBONATE ANALYSIS PROCEDURES FOLLOWED BY BATTELLE OCEAN SCIENCES AND GLOBAL GEOCHEMISTRY CORPORATION

Abstract

Introduction

Equipment and Materials

Equipment

Materials

Summary of Total Organic Carbon and Carbonate Procedures

Total Organic Carbon Analyses

Total Inorganic Carbon Analyses

Quality Assurance/Quality Control

Documentation of Limits of Detection

Verification of Instrument Performance

Monitoring Interference/Contamination

Documentation of Analytical Accuracy

Documentation of Analytical Precision

Conclusions

11 TOTAL ORGANIC AND CARBONATE CARBON CONTENT OF SEDIMENT

Abstract

Introduction

Apparatus and Materials

Procedure

LECO System Preparation

Total Carbon Determination

Total Organic Carbon Determination

Total Carbonate Carbon Content

Standardization and Calculations

Quality Control

Reporting and Performance Criteria

Conclusions

12 TISSUE LIPID DETERMINATION METHOD

Abstract

Introduction

Apparatus and Materials

Procedure

Calculation

Quality Control

Conclusions

Acknowledgments

13 LIPID WEIGHT DETERMINATION PROCEDURES FOLLOWED BY BATTELLE OCEAN SCIENCES

Abstract

Introduction

Sample Processing

Equipment

Analytical Procedures

Calculation

Conclusions

14 GONADAL INDEX AND HISTOPATHOLOGY FOR THE EAST AND WEST COASTS USED IN THE NATIONAL STATUS AND TRENDS MUSSEL WATCH PROJECT

Abstract

Introduction

Equipment and Materials

Equipment

Chemicals

Staining Solutions

Harris' Hematoxylin

Eosin Y

Methods

Gonadal Index

Mussel Preparation

Oyster Preparation

Processing

Staining Procedure

Gonadal Index Determination

Quality Control

Histopathology

Gross Pathology

Microscopic Examinations

Conclusions

References

15 GONADAL ANALYSIS - Crassostrea virginica

Abstract

Introduction

Equipment, Reagents, and Solutions

Sample Collection and Fixation

Slide Preparation

Tissue Embedding

Tissue Sectioning

Tissue Staining

Analysis

Conclusions

References

16 COLLECTION OF FISH TISSUES FOR THE NATIONAL BENTHIC SURVEILLANCE PROJECT NECROPSY PROCEDURE, TISSUE PROCESSING, AND DIAGNOSTIC PROCEDURE FOR HISTOPATHOLOGY

Abstract

Introduction

Preparation of Fish for Sample Collection

Recording of Field Data

Necropsy Procedure

Collection of Structures for Fish Age Determination

Necropsy Tools

Observation and Collection of External Lesions

Collection of Bile

Collection of Liver Histology

Collection of Kidney and Ovary Tissues for Histology

Collection of Liver Tissue for Metals

Collection of Liver Tissue for Organic Chemical Analyses

Collection of Stomach Contents

Handling Histopathology Tissues Following Necropsy

Processing and Analyzing Histopathology Tissues

Conclusions

References

17 PROCEDURE FOR ESTIMATING *CLOSTRIDIUM PERFRINGENS* IN SEDIMENTS

Abstract

Introduction

Equipment and Materials

Procedure

Sample Collection and Preservation

Sample Extraction

Sample Preparation and Counting Procedures

Calculations

Quality Control

Interference and Contamination

Accuracy and Precision

Conclusions

References

18 METHOD ESTIMATION OF Clostridium perfringens IN SEDIMENTS

Abstract

Introduction

Apparatus and Materials

Sample Collection, Preservation, and Storage

Procedure

Sample Preparation

mCP Membrane Filter Method

Calculations

Quality Control

Interference and Contamination

Accuracy and Precision

Conclusion

References

19 Perkinsus marinus ASSAY

Abstract

Introduction

Equipment and Supplies

Reagents

Thioglycollate Medium Preparation

Antibiotic Solution

Lugol's Iodine Solution

PBS (II)

Equipment

Tissue Collection

Tissue Analysis

Semiquantitative Method

Quantitative Method

Calculations

References

20 DEVELOPMENT OF AN IMMUNOLOGICAL PROBE FOR QUANTIFICATION OF OYSTER GONAD

Abstract

Introduction

Equipment and Reagents

Procedure

Collection of Gametic Tissue

Gametic Tissue Probe Development

Collection of Gametic Tissue for NS&T Program

Purification of Oyster Eggs

Purification of Oyster Sperm

Determination of Protein Content in Oyster Eggs and Sperm

Determination of Egg Dry Weight

Determination of Egg Protein Content

Determination of Protein Content in Oyster Sperm

Immunization of Rabbits with Purified Oyster Eggs and Sperm

Ring Immunodiffusion Test

Passive Hemagglutination Test

Evaluation of Specificity of Antiserum

Ouchterlony Double Immunodiffusion Test for Antiserum Specificity

Preparation of Acetone-dried Somatic Tissue Power

Removing Non-specific Antibody Using Acetone-dried Tissue Powder

Quantification of Oyster Eggs or Sperm Using Single Ring Immunodiffusion

References

VOLUME III - COMPREHENSIVE DESCRIPTIONS OF ELEMENTAL ANALYTICAL METHODS

MAJOR DISSOLUTION OF MARINE SEDIMENT AND ATOMIC ABSORPTION ANALYSIS OF MAJOR AND TRACE ELEMENTS

Abstract

Introduction

Equipment and Supplies

Instrumentation

Supplies

Labware

Reagents

Solvents and Matrix Modifiers

Sample Treatment

Drying

Compositing

Digestion

Calibration

Sn, Sb, Tl, and As Calibration

Ag Calibration

Cd, Se, Sb, and Sn Additional Dilutions

Calculations

References

Instrumental Analysis

Aluminum

Silicon

Chromium

Manganese

Iron

Nickel

Copper

Zinc

Arsenic

Selenium

Silver

Cadmium

Tin

Antimony

Mercury

Thallium

Lead

2 DIGESTION OF FISH TISSUE AND ATOMIC ABSORPTION ANALYSIS OF TRACE ELEMENTS

Abstract

Introduction

Equipment and Supplies

Instrumentation

Supplies

Labware

Reagents

Solvents and Matrix Modifiers

Sample Preparation

Calibration

Calculations

References

Instrumental Analysis

Aluminum

Chromium

Manganese

Iron

Nickel

Copper

Zinc

Arsenic

Selenium

Silver

Cadmium

Tin

Antimony

Mercury

Thallium

Lead

3 ANALYTICAL METHODS FOR TRACE ELEMENTS IN SEDIMENTS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

Abstract

Introduction

Equipment and Supplies

Equipment

Supplies

Chemicals and Reagents

Sample Treatment

Sample Matrix Modification

Sample Drying and Compositing

Microwave Digestion

Dilution

Standards

Calibration and Computation of Analyte Concentrations

Detection Limits

Changes in Analytical Methods Over Time

Acknowledgments

Selected References Utilized in Methods Development

Instrumental Analyses

Aluminum

Antimony

Arsenic

Cadmium

Chromium

Copper

Iron

Lead

Manganese

Mercury

Nicke!

Selenium

Silicon

Silver

Thallium

Tin

Zinc

4 ANALYTICAL METHODS FOR TRACE ELEMENTS IN FISH LIVER BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

Abstract

Introduction

Equipment and Supplies

Equipment

Supplies

Chemicals and Reagents

Sample Treatment

Sample Matrix Modification

Sample Preparation

Microwave Digestion

Alternate Bomb Digestion

Dilution

Calibration and Computation of Analyte Concentrations

Detection Limits

Changes in Analytical Methods Over Time

Acknowledgments

Selected References Used in Method Development

Instrumental Analyses

Aluminum

Arsenic

Cadmium

Chromium

Copper

Iron

Lead

Manganese

Mercury

Nickel

Selenium

Silver

Thallium

Tin

Zinc

5 SAMPLE PREPARATION AND ANALYSES OF TRACE ELEMENTS IN SEDIMENTS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

Abstract

Introduction

Equipment and Supplies

Sample Processing

Tissues

Sediments

Calibration and Computation of Analyte Concentrations

Conclusions

References

Sediment Analyses

Silver

Aluminum

Arsenic

Cadmium

Chromium

Copper

Iron

Iron

Mercury

Manganese

Nickel

Lead

Antimony

Selenium

Tin

Tin

Zinc

Tissue

Silver

Aluminum

Arsenic

Cadmium

Chromium

Copper

Iron

Mercury

Manganese

Nickel

Lead

Antimony

Selenium

Tin

Tin

Zinc

6 GERG TRACE ELEMENT QUANTIFICATION TECHNIQUES

Introduction

Equipment and Supplies

Sample Treatment

Oyster Tissue

Bottom Sediment

Calibration and Analysis

Calculations

Concentration

Dilution Factor

Concentration

Instrumental Analysis

Mercury

Aluminum

Copper

Iron

Manganese

Zinc

Silver

Arsenic

Cadmium

Chromium

Copper

Nickel

Lead

Selenium

Tin

Aluminum

Chromium

Iron

Manganese

7 ANALYSIS OF MARINE SEDIMENT AND BIVALVE TISSUE BY X-RAY FLUORESCENCE, ATOMIC ABSORPTION, AND INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

Abstract

Introduction

Equipment and Supplies

Sample Treatment

Drying and Homogenization

Digestion

Calibration

Spectral Interferences

Calculations

Graphite Furnace and ICP-MS

Cold Vapor Atomic Absorption

X-Ray Fluorescence

Conclusions

References

Instrumental Analysis

Atomic Absorption Spectrometry

Aluminum

Chromium

Nickel

Selenium

Silver

Cadmium

Tin

Antimony

Mercury

Thallium

Lead

Inductively Coupled Plasma Mass Spectrometry X-Ray Fluorescence

8 ANALYTICAL PROCEDURES FOLLOWED BY SCIENCE APPLICATIONS INTERNATIONAL CORPORATION, TRACE AND MAJOR ELEMENT ANALYSES

Introduction

Trace Metal Analysis

Equipment and Reagents

Bivalve Tissues Digestion - SIAC

Surficial Sediments

Sample Analysis

References

VOLUME IV - COMPREHENSIVE DESCRIPTIONS OF TRACE ORGANIC ANALYTICAL METHODS

1 STANDARD ANALYTICAL PROCEDURES OF THE NOAA NATIONAL ANALYTICAL FACILITY 1985-1986 (REVISED). EXTRACTABLE TOXIC ORGANIC COMPOUNDS

Abstract

Introduction

Quality of Analytical Data

Summary of Analytical Procedures

Materials

Instruments and Accessories

Chemicals

Column Packings

Labware

Internal Standards, Solutions, and Solvents

Internal Standard Solutions

Calibration Solutions

Spike Solutions

Solvents

Solvent Purity Testing

Methanol and Redistilled Methanol Purity Testing

6:4:3 Cyclohexane:methanol:dichloromethane Solvent Purity Testing

Dichloromethane

Pentane

Hexane

Lost Testing and Calibration of Silica Gel/Alumina Column Packing

Column Packing Activation

Silica Gel

Alumina

Copper

Sand

Silica Gel/Alumina Calibration Extract

Column Preparation

Column Calibration

Fraction Concentration

Sephadex LH-20 Column Preparation and Calibration

Calibration Solutions

Azulene/Perylene Calibration Solution

Sediment/Tissue Calibration Extract

Column Preparation

Column Calibration with Azulene/Perylene

Column Calibration with Sediment/Tissue Calibration Extract

Fraction Concentration

Recycling Sephadex Column Packing

Suggested Sample Composite Preparation

Sediment Composites

Tissue Composites

Sediment Extraction

Blanks and Calibration Solutions

Sample Extraction

Extract Concentration

Tissue Extraction

Blanks and Calibration Solutions

Sample Extraction

Extract Concentration

Dry Weight Determination

Sediment

Tissue

Dry Weight Calculation

Silica Gel/Alumina Chromatography

Column Preparation

Column Chromatography of Extracts

Sephadex LH-20 Chromatography

Special Instructions

Column Chromatography of Extracts

Concentration of Fraction SA2-L2

Recycling of Column Packing

Gas Chromatography Analytical Procedures

Instrument Settings

ECD Operation

FID Operation

Injection of Sample Concentrates and Blanks

Verification of Stable GC Performance

GC Reproducibility and Calibration Mixture Verification

Analyte and Internal Standard Concentration Calculations

Analyte Concentration Calculations

Spiked Blank Calculations

Sample Chromatograms and Calculations

Conclusions

Acknowledgments

References

2 NORTHWEST FISHERIES SCIENCE CENTER ORGANIC ANALYTICAL PROCEDURES

Abstract

Introduction

Materials

Instruments and Accessories

Chemicals

Column Packings

Labware

Standard Solutions

Purity Testing

Activation of Column Packings

Lot Testing and Calibration of Silica Gel and Alumina

Preparation of Composite Samples

Preparation of Composite Samples for Sediments

Preparation of Composite Samples for Tissues

Extraction of Sediment Samples

Extraction of Samples for AHs, CHs, and Coprostanol

Precleanup of AH/CH Extracts

Concentration of AH/CH Extracts

Precleanup of COP Extracts

Concentration of COP Extracts

Extraction of Tissue Samples

Extraction of Samples for AHs, and CHs

Extraction of Samples for CHs and Lipid

Concentration of Lipid Extracts

Precleanup of AH/CH and CH Extracts

Concentration of AH/CH Extracts

Concentration of CH Extracts

Dry Weight Determination

Dry Weight Determination for Sediment Samples

Dry Weight Determination for Tissue Samples

Dry Weight Calculation

EC-HPLC Chromatography

Calibration of the SEC-HPLC System

Isolation of AH/CH or CH Factions

PAC-HPLC Chromatography

Calibration of the PAC-HPLC System

Isolation of COP Factions

Preparation of Samples for Gas Chromatography

Concentration of AH/CH Fractions from Sediment

Concentration of AH/CH Fractions from Tissue

Concentration of CH Fractions from Tissue

Concentration of COP Fractions from Sediment Samples

Gas Chromatography

Instrument Settings

Operation of the GC/ECD

Operation of the GC/MSD

Operation of the GC/FID

Injection of Sample Concentrates

Verification of Stable GC Performance

Verification of GC Reproducibility and the Calibration Mixture

Calculation of Analyte and Internal-Standard Concentrations

Calculation of Analyte Concentrations

Calculation of Spiked Blanks

Data Management for Aromatic Hydrocarbons

Data Management for Chlorinated Hydrocarbons

Conclusions

Acknowledgments

References

3 STANDARD ORGANIC ANALYTICAL PROCEDURES OF THE NOAA SOUTHEAST FISHERIES SCIENCE CENTER

Abstract

Introduction

Protocol Differences and Changes for Samples Collected in 1984 and 1985

Protocol Differences and Changes for Samples Collected in 1986 and 1987

General Comments

References

4 STANDARD ORGANIC ANALYTICAL PROCEDURES OF THE NOAA NORTHEAST FISHERIES SCIENCE CENTER

Abstract

Introduction

Protocol Differences and Changes

Conclusions

Acknowledgments

5 GERG TRACE ORGANICS CONTAMINANT ANALYTICAL TECHNIQUES

Introduction

Tissues and Sediment Analyses

Sample Collection, Preservation, and Storage

Percent Moisture Determination

Summary of Tissue and Sediment Methods

Interferences

Apparatus and Materials

Procedures

Quality Control

Quantitative Determination of Polynuclear Aromatic Hydrocarbons by Gas Chromatography/Mass Spectrometry (GC/MS) - Selected Ion Monitoring (SIM) Mode

Summary

Apparatus and Materials

GC/MS Calibrations

GC/MS Analyses

Calculations

GC/MS Initial and Continuing Calibration

Quantitative Determination of Chlorinated Hydrocarbons

Summary

Apparatus and Materials

Quality Assurance/Quality Control (QA/QC) Requirements

Calibration Checks

Method Blank Analysis

IS Analysis

Matrix Spike Analysis

Method Detection Limit

GC Resolution

Reference Material Analysis

Calculations

Chlorinated Hydrocarbon Calculations

Calculation Notes

Conclusions

Acknowledgments

References

6 ANALYTICAL PROCEDURES FOLLOWED BY BATTELLE OCEAN SCIENCES AND SCIENCE APPLICATIONS INTERNATIONAL CORPORATION TO QUANTIFY ORGANIC CONTAMINANTS

Abstract

Introduction

Equipment and Reagents (Materials Required for Year 4, 1989)

Tissue Extraction

Sediment Extraction

Tissue Extraction, Butyltins

HPLC Accessories

GC Accessories

Gases

Summary of Analytical Procedures, 1986

Bivalve Sample Preparation and Extraction

Sediment Sample Preparation and Extraction

Extract Concentration

Tissue Lipid Weight Determination

Dry Weight Determination

Silica Gel/Alumina Chromatography of Tissue and Sediment Extracts

Sephadex Chromatography

Instrumental Analysis

Summary of Analytical Procedures, Battelle and SAIC, 1987

Tissue Extraction

Sediment Extraction

Sample Analysis

Summary of Analytical Procedures, Battelle and SAIC, 1988

Sample Extraction

Sample Analysis

Tributyltin Analysis

Sample Extraction

Instrumental Analysis

Additional Analyses

Summary of Analytical Procedures, Battelle and SAIC, 1989

Tissue Sample Extraction

Tributyltin

Sediment Extraction

Sample Analysis

Additional Analyses

Summary of Analytical Procedures, Battelle, 1990-1992

Conclusions

Acknowledgments

References

7 NIST METHODS FOR CERTIFICATION OF SRM 1941 AND SRM 1974

Abstract

Introduction

SRM 1941, Organic in Marine Sediment

Summary

Collection and Preparation

Moisture Determination

Polycyclic Aromatic Hydrocarbons

Polychlorinated Biphenyl Congeners and Chlorinated Pesticides

Certified and Noncertified Concentrations

RM 1974, Organic in Mussel Tissue

Summary

Collection and Preparation

Moisture Determination

Polycyclic Aromatic Hydrocarbons

Polychlorinated Biphenyl Congeners and Chlorinated Pesticides

Certified and Noncertified Concentrations

Conclusions

Acknowledgments

References

Reference No.: 025

NOAA. 1994. Use of Standards and Reference Materials in the Measurement of Chlorinated Hydrocarbon Residues - Chemistry Workbook. Prepared by T.L. Wade and A.Y. Cantillo for the National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, Maryland. Technical Memorandum NOS ORCA 77.

Media in which methods can be used: Water ✓ Sediment Biota Keywords: Water quality, sediment quality, pesticides, PCBs, PAHs, tissue analysis, sampling, OA/OC

Abstract

This document is a workbook on the use of standards and reference materials for a QA/QC program for marine pollution studies of chlorinated hydrocarbons. As part of their mission, the Group of Experts on Standards and Reference Materials (GESREM) developed this workbook for laboratories that are initiating organic contaminant analyses of environmental samples. The first sections of this workbook give details of sample collection, archival, extraction, instrumental analyses, and data reduction under proper QA/QC procedures. The last sections give examples of how the calculation and procedures are actually applied in a laboratory. This workbook was prepared under sponsorship of the Intergovernmental Oceanographic Commission (IOC) of the United Nations Educational, Scientific, and Cultural Organization (UNESCO).

[extracted from document]

Contact: (301) 713-3028

TABLE OF CONTENTS

1 INTRODUCTION

Purpose

Facilities and Personnel

Approach

Warning

2 SAMPLE TRACKING

Collection

Archival

Preparation

3 ANALYTE ISOLATION

Introduction

Summary of Extraction Methods

4 INSTRUMENTAL ANALYSES

Introduction Initallization

Optimize Operating Conditions

Calibration

Reference Materials

Analytical Sequence

Quantification

Method Detection Limit

QA/QC Validation

Control Charts

Data Reporting and Archiving

5 EXAMPLE CALCULATIONS

Introduction

Examples

Example 1: Preparation of Stock Solutions

Example 2: Preparation of Calibration Solutions

Example 3: Determination of Percent Moisture

Example 4: Determination of Percent Solvent Extractable Material

Weight

Example 5: Required Sample Weight

Example 6: Calibration Curve for the Analysis of Chlorinated

Compounds Using 4,4'-DDE Calculation as an Example

Calibration Curve

Concentration Calculations

Percent Recovery

Example 7: Determination of Method Detection Limit

MDL Calculation

Upper and Lower 95% Confidence Limits

Example 8: Spiked Blank Calculations

Example 9: Spiked Matrix Calculations

Example 10: Reference Material Calculations

6 ANSWERS

7 REFERENCES

8 REFERENCES

Example Forms

Sample Receiving and Integrity Form

Sample Processing Form

Sample Transfer Form

Sample Information Form

Sample Information Sheet

Laboratory Sample Logbook

Laboratory Sample Logbook

Selected Pesticide/PCB Structures and CAS Numbers

Standard Operating Procedures of TAMU/GERG

SOP-9016 - Extraction of Biological Tissues for Chlorinated Hydrocarbon Analysis

SOP-9017 - Quantitative Determination of Chlorinated Hydrocarbons

Information on NIST SRM 1974, Organics in Mussel Tissue (*Mytilus edulis*)

List of Contributors and Reviewers

Reference No.: 026

Parsons, T. R., Y. Maita, and C. Lalli. 1984. A Manual for Chemical and Biological Methods for Seawater Analysis. 1st ed. Pergamon Press, Toronto.

Media in which methods can be used: ✓ Water ☐ Sediment ☐ Biota

Keywords: Water quality, nutrients, organics, total organic carbon, chlorophyll, pathogenic organisms, dissolved oxygen, sampling

Abstract

This text is intended to serve as an introduction to the quantitative analysis of seawater. Biological and chemical techniques are described in detail and these are believed to be among those most often used by biological oceanographers. In general, the techniques require a minimum of prior professional training; in addition, methods requiring the use of very expensive equipment have been avoided. As such, it is intended that the techniques will be useful to students, environmentalists and engineers as well as to some other oceanographic disciplines.

The described techniques can generally be employed with a minimum outlay of capital equipment. This the use of a spectrophotometer, fluorometer, microscopes, Coulter Counter, and scintillation counter will cover most of the methods. The use of more sophisticated equipment, such as gas/liquid chromatograms, atomic absorption analyzers, and mass spectrometers, is not described since the operation of these pieces of equipment is usually specialized and well described by company brochures. In addition, however, some techniques are not described because there is equipment available which specifically measures the property without requiring further detailed explanations. Such equipment includes salinometers, light meters, and Autoanalyzers® (the latter being extensively adapted for nutrient analyses using basic colorimetric techniques which are reproduced here). In other cases, the measurement of a property may still be controversial and also require more expensive equipment; this appears to be the case with dissolved organic carbon (DOC).

Methods given in this text are described in terms of procedures and not in terms of interpretation of results. The latter is up to the individual investigator; in some methods, reference material quoted may assist in the interpretation of results.

[extracted from document]

TABLE OF CONTENTS

1 GENERAL NOTES ON ANALYTICAL TECHNIQUES

2 NUTRIENTS

Determination of Nitrate

Determination of Nitrite

Determination of Ammonia (Oxidation Method)

Determination of Ammonia (Alternative Method)

Determination of Urea

Determination of Phosphate

Determination of Silicate

Bioassay of Seawater for Vitamins: Vitamin B₁₂ (Cyanocobalamin)

3 SOLUBLE ORGANIC MATERIAL

Determination of Total Dissolved Organic Nitrogen

Determination of Dissolved Free Amino Acids by Fluorometric Analysis

Determination of Dissolved Combined Amino Acids by Fluorometric Analysis

Determination of Total Dissolved Monosaccharides

Determination of Total Dissolved Carbohydrates by MBTH Assay

Determination of Petroleum Hydrocarbons

4 PARTICULATE MATERIAL

Determination of Particulate Organic Carbon

Determination of Total Particulate Carbohydrate by Anthrone Reagent

Determination of Total Particulate Carbohydrate by MBTH Assay

Determination of Total Particulate Amino Acids by Fluorometric Analysis

Determination of Particulate Lipid

Determination of Adenosine Triphosphate (ATP) in Particulate Material

Electronic Counting and Sizing of Particles

Sinking Rate of Phytoplankton and Other Particulates

5 PLANT PIGMENTS

Determination of Chlorophylls and Total Carotenoids:

Spectrophotometric Method

Spectrophotometric Determination of Phaeo-pigments

Fluorometric Determination of Chlorophylls

Fluorometric Determination of Phaeo-pigments

Automated Estimation of Chlorophyll Pigments

6 PHOTOSYNTHESIS

Photosynthesis as Measured by the Uptake of Radioactive Carbon

7 BACTERIA

Direct Counting of Bacteria by Fluorescence Microscopy Heterotrophic Activity (as Measured by Glucose Uptake) Heterotrophic Growth (as Measured by Thymidine Uptake)

8 GASES IN SEAWATER

Determination of Dissolved Oxygen
Oxygen Standardization by Titration
Determination of Carbonate Alkalinity and Total Carbon Dioxide (All Forms)
Determination of Sulfide

9 COUNTING, MEDIA, AND PRESERVATIVES

Collection and Enumeration of Organisms
Artificial Seawater Media
Culture Collections
Plankton Preservatives

10 TERMS AND EQUIVALENTS

Oxygen Equivalents (Chemical and Biological)
Energy Equivalents
Carbon Equivalents
Metric Units and Equivalents
Sigma-T Values

Plumb, R. H., Jr. 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY., for U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Technical Report EPA/CD-81-1. (NTIS: PB84-191048).

✓ Water ✓ Sediment Media in which methods can be used: Biota Water quality, sediment quality, sampling, grain size, pH, total solids, inorganics, **Keywords:**

organics, metals, nutrients, pesticides, PAHs, oxygen demand

Abstract

The purpose of this handbook is to provide state-of-the-art guidance on the subjects of sampling, preservation, and analysis of dredged and fill material.

The information is presented in one of three major sections:

- a discussion of rationale for project managers
- a step-by-step protocol for sample handling and each test procedure
- a listing of analytical techniques, including sample pretreatment procedures

The purpose of the first section is to point out to a project director or project manager the types of tradeoffs that have to be considered in developing an acceptable sampling program. If a project director is aware of the kind of information provided by use of each piece of equipment or testing procedure, and the present limitations of this information, he can then make a decision to use the equipment and/or procedures that are most suited to his particular project.

The second section of the handbook provides guidance to the laboratory and field personnel that will be implementing the sampling program. This includes a discussion of the types of sampling equipment to be used and when to use each type, a step-by-step description of the three general chemical tests considered, along with the required method of sample handling and a general quality control program, beginning with sample collection. The three chemical tests that are described are:

- a short-term water leaching test (the standard elutriate test)
- a strong acid digest or an organic solvent extract (bulk analysis)
- an elemental distribution test (sediment fractionation)

The third section presents for laboratory personnel a series of analytical techniques, including sample preparation, were required, for 44 parameters. Since the purpose of this manual was not to develop new methods, the methods are generally those found in Standard Methods, ASTM, and EPA manuals. The listed procedures are considered most appropriate for general use; it is recommended that they be utilized when it is decided to analyze samples for that particular constituent. [extracted from document]

Contact: (601) 634-2571

TABLE OF CONTENTS

1 PROJECT MANAGEMENT GUIDANCE

Project Definition

Test Selection

Testing Procedures

Chemical Analyses

Sampling Considerations

Representative Sampling

Sampling Techniques Selection

Sample Preservation

Quality Control

Additional Considerations

Summary

References

2 FIELD/LABORATORY GUIDANCE

Method of Sample Collection

Water Samplers

Sediment Samplers

Sample Collection

Sample Handling

Sample Preservation

Quality Control

Objectives

Work Load

Present Limitations

Types of Chemical Tests

Elutriate Test

Sediment Fractionation

Bulk Analysis

Summary

References

3 ANALYTICAL METHODS

Physical Analysis

Cation Exchange Capacity

Procedures for Sediment Samples

Method 1: Agitation, Filtration

Method 2: Centrifugation

Particle Size

Procedures for Sediment Samples

Method 1: Sieving and Electronic Particle Counters

Method 2: Sieving and Pipet Analysis

рН

Procedures for Water Samples

Method 1: Glass Electrode

Procedures for Sediment Samples

Method 1: Glass Electrode

Oxidation Reduction Potential

Procedures for Water and Sediment Samples

Method 1: Platinum Electrode

Total Solids and Volatile Solids

Total Solids Procedure for Water Samples

Method 1: Gravimetric

Total Solids Procedure for Sediment Samples

Method 1: Gravimetric

Volatile Solids Determination

Specific Gravity

Procedure for Sediment Samples

Inorganic Analysis

Carbon, Total Organic and Inorganic

Procedure for Water Samples

Method 1: Infrared Analysis

Procedure for Sediment Samples

Method 1: Sample Ignition

Method 2: Differential Combustion

Metals (Al, Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Mo, Ni, Zn)

Procedure for Water Samples (All metals except Ha, Hg, and Se)

Method 1: Direct Flame Atomic Absorption, Total Metals

Method 2: Direct Flame Atomic Absorption, Soluble Metals

Method 3: Graphite Furnace Atomic Absorption

Method 4: Chelation-Extraction Atomic Absorption

Procedure for Sediment Samples (All metals except As, Hg, and

Se)

Method 1: Direct Flame Atomic Absorption, Total Metals

Metals (Arsenic)

Procedure for Water Samples

Method 1: Arsine Generation

Method 2: Graphite Furnace

Procedures for Sediment Samples

Method 1: Arsine Generation

Metals (Mercury)

Procedure for Water Samples

Method 1: Cold Vapor Technique

Procedure for Sediment Samples

Method 1: Cold Vapor Technique

Metals (Selenium)

Procedure for Water Samples

Method 1: Hydride Generation

Procedures for Sediment Samples

Method 1: Digestion/Flameless Atomic Absorption

Method 2: Hydride Generation

Nitrogen (Ammonia, Nitrate, Nitrite, Total Kjeldahl, Organic)

Nitrogen (Ammonia)

Procedures for Water Samples

Method 1: Colorimetric, Automated Phenate

Method 2: Colorimetric, Automated O-Tolidine

Method 3: Colorimetric or Titrimetric, Manual

Procedures for Sediment Samples

Method 1: Potassium Chloride Extraction

Method 2: Distillation

Method 3: Distilled Water Extraction

Nitrogen (Nitrate)

Procedures for Water Samples

Method 1: Colorimetric, Manual, Brucine Sulfate

Method 2: Colorimetric, Automated, Cadmium Reduction

Method 3: Colorimetric, Automated, Hydrazine Reduction

Method 4: Colorimetric, Manual, Cadmium Reduction

Nitrogen (Nitrite)

Procedures for Water Samples

Method 1: Colorimetric, Automated, Cadmium Reduction

Method 2: Colorimetric, Automated, Hydrazine Reduction

Method 3: Colorimetric, Manual, Cadmium Reduction

Method 4: Colorimetric, Manual

Procedure for Sediment Samples

Nitrogen (Total Kjeldahl)

Procedures for Water Samples

Method 1: Colorimetric, Semiautomated with Block Digester

Method 2: Manual Colorimetric, Titrimetric

Method 3: Colorimetric, Automated Phenate

Procedures for Sediment Samples

Method 1: Kjeldahl Digestion

Method 2: Block Digestion

Nitrogen (Organic)

Phosphates (Soluble Reactive, Total, Organic)

Phosphates (Soluble Reactive)

Procedures for Water Samples

Method 1: Ascorbic Acid, Manual

Method 2: Ascorbic Acid, Automated

Method 3: Stannous Chloride, Automated

Method 4: Vanadomolybdophosphoric Acid, Manual

Procedure for Sediment Samples

Phosphates (Total)

Procedures for Water Samples

Procedures for Sediment Samples

Phosphates (Organic)

Procedures for Water Samples

Procedures for Sediment Samples

Method 1: Acid Hydrolysis

Method 2: Acid Extraction

Sulfides

Procedures for Water Samples

Method 1: Methylene Blue, Colorimetric

Method 2: Iodine Titrimetric

Procedure for Sediment Samples

Method 1: Distillation, Methylene Blue, Colorimetric

Organic Analysis

Carbamates

Procedure for Water Samples

Method 1: Methylene Chloride Extraction

Procedure for Sediment Sample

Method 1: Methylene Chloride Extraction

Chlorinated Phenoxy Acid Herbicides

Procedures for Water Samples

Method 1: Chloroform Extraction

Method 2: Ethyl Ether Extraction

Procedure for Sediment Samples

Method 1: Acetone-Hexane Extraction

Oil and Grease

Procedure for Water Samples

Method 1: Freon Extraction

Procedure for Sediment Samples

Method 1: Freon Extraction

Chlorinated Hydrocarbons

Procedures for Water Samples

Method 1: Benzene Extraction

Method 2: Methylene Chloride/Hexane Extraction

Procedures for Sediment Samples

Method 1: Acetone/Hexane Extraction

Method 2: Acetonitrile Extraction

Organophosphorus Pesticides

Procedure for Water Samples

Method 1: Hexane, Chloroform, Benzene Extraction

Procedure for Sediment Samples

Method 1: Hexane Extraction

Polynuclear Aromatic Hydrocarbons

Procedure for Water Samples

Method 1: Dichloromethane Extraction/Gas Chromatography

Procedures for Sediment Samples

Method 1: Methanol Extraction/UV Analysis

Method 2: Ethanol Extraction/UV Spectrophotometry

Phenolics

Procedures for Water Samples

Method 1: Distillation, 4-aminoantipyrine Colorimetric

Method 2: Distillation, MBTH Colorimetric

Procedures for Sediment Samples

Method 1: Distillation, 4-aminoantipyrine Colorimetric

Method 2: MBTH Colorimetric

Miscellaneous Analysis

Chlorine Demand

Procedures for Water Samples

Procedures for Sediment Samples

Biochemical Oxygen Demand

Procedures for Water Samples

Procedures for Sediment Samples

Chemical Oxygen Demand

Procedures for Water Samples

Method 1: Low Level, 5 to 50 mg/ ℓ

Method 2: High Level, 50 to 800 mg/ ℓ

Procedure for Sediment Samples

Sediment Oxygen Demand

Procedures for Sediment Samples

Method 1: In Situ

Method 2: Laboratory

Reference No.: 028

PTI Environmental Services. 1989. Data Validation Guidance Manual for Selected Sediment Variables, Edited Draft Report. Prepared by PTI Environmental Services for the Washington Department of Ecology, Sediment Management Unit, Olympia, WA.

Media in which methods can be used: Water Sediment Bio
--

Keywords:

Sediment quality, QA/QC, sampling, grain size, total solids, total organic carbon, metals, organics, toxicity/bioassays, population/community, bioaccumulation, data

analysis/management

Abstract

Data validation is the process by which a sample, measurement method, or data point is deemed useful for a specific purpose. The objective of the Data Validation Guidance Manual for Selected Sediment Variables is to provide a thorough description of the data quality review process, and a standardized format for assessing data accuracy, precision, completeness, and usability. This document is designed to be used by Washington Department of Ecology staff to assess the quality of sediment data collected throughout Puget Sound to determine if they are suitable for inclusion in Ecology's sediment quality values database.

Environmental variables in Puget Sound are measured by a wide variety of organizations, including government agencies, universities, and private institutions. However, comparisons of results from different studies frequently are limited because different methods are used to measure the same variable(s). The ability to compare data among different studies is highly desirable for developing a comprehensive management strategy for Puget Sound. A standardized, rigorous review process is essential to ensuring the quality and integrity of the sediment quality values database.

The approach to describing the data review process is organized by the major categories of analytes (i.e., conventional variables, metals, semivolatile organic compounds, and volatile organic compounds (VOC), bioaccumulation, bioassays, and benthic infauna). These major categories represent classes of chemical or biological variables that have similar analytical requirements. Only chemical and biological variables commonly used to characterize the quality of Puget Sound sediments are included in the guidance manual. The discussion of the data validation process if further focused by emphasizing the analytical techniques that best address the data quality requirements of the database or that have been recommended by the major programs that address data quality in Puget Sound [PSDDA, PSEP, Puget Sound Ambient Monitoring Program (PSAMP)]. Screening techniques, which generally have higher detection limits and less stringent precision and accuracy requirements, are not addressed in this manual.

General guidance on QA during field sampling is provided in Section 2. Section 3 summarized general data collection and reporting requirements. Sections 4 through 10 contain specific QA/QC requirements, evaluation procedures, and recommended actions for data on conventional variables, metals, semivolatile organic compounds, VOC, bioaccumulation, bioassays, and benthic community structure. A list of acronyms and a glossary are included in Appendix A to clarify terms used throughout the manual. [extracted from document]

Contact: (206) 407-6908

TABLE OF CONTENTS

1 INTRODUCTION

Objective

Background

Approach

Report Overview

References

2 GENERAL GUIDANCE ON FIELD SAMPLING QUALITY ASSURANCE

Positioning

Sediment Sample Collection and Storage

Sample Handling and Document Control

References

3 GENERAL DATA REPORTING REQUIREMENTS

Conventional Variables

Particle Size, Total Solids, and Total Volatile Solids

Total Organic Carbon

Total Sulfides

Metals

Organic Compounds

Bioassays

Amphipod Mortality Test

Juvenile Bivalve Mortality Test

Juvenile Neanthes Growth/Mortality Test

Bivalve Larvae Abnormality Test (Whole Sediment)

Bivalve Larvae Abnormality Test (Elutriate)

Echinderm Embryo Abnormality Test

Microtox[™] Test (Saline Extract)

Microtox[™] Test (Organic Extract)

Benthic Infauna

4 QUALITY ASSURANCE FOR CONVENTIONAL VARIABLES IN SEDIMENT

Introduction

Particle Size, Total Solids, and Total Volatile Solids

Requirements

Evaluation Procedure

Action

Total Organic Carbon

Requirements

Evaluation Procedure

Action

Total Sulfides

Requirements

Evaluation Procedure

Action

References

5 QUALITY ASSURANCE FOR METALS IN SEDIMENT

Introduction

Unique Sampling Requirements for Metal Analysis

Data Completeness and Format

Data Validation and Assessment

Instrument Calibration

Detection Limits

Blank Analysis

Standard Reference Material

Matrix Spike Analysis

Duplicate Analysis

Overview of Specific Instrument Requirements

Graphite Furnace Atomic Absorption Analysis

Flame and Cold Vapor Atomic Absorption Analysis

Inductively Coupled Plasma Analysis

Serial Dilution Analysis

References

6 QUALITY ASSURANCE FOR SEMIVOLATILES IN SEDIMENTS

Introduction

Unique Sampling Requirements for Semivolatile Analysis

Data Completeness and Format

Overview of Extraction, Extract Cleanup, and Instrument Analysis

Extraction

Sulfur Flemoval

Cleanup and Separation

Extract Concentration

Instrumental Analysis

Commonly Used Analytical Protocols

Modifications of Routine Methods

Data Validation and Assessment

GC/MS Tuning

Initial Calibration

Ongoing Calibration

Compound Confirmation

Detection Limits

Analysis of Blanks

Surrogate Spike Commands

Standard Reference Material

Matrix Spikes

Replicate Analysis

Calculation Checks

Isotope Dilution

Internal Standard Quantification

External Standard Quantification

References

7 QUALITY ASSURANCE FOR VOLATILE ORGANICS IN SEDIMENTS

Introduction

Unique Sampling Requirements for Volatile Organics

Data Completeness and Format

Overview of Extraction, Extract Cleanup, and Instrument Analysis

Heated Purge-and-Trap Method

Vacuum Extraction Technique

Data Validation and Assessment

GC/MS Tuning

Initial Calibration

Ongoing Calibration

Compound Confirmation

Detection Limits

Analysis of Blanks

Surrogate Spike Commands

Matrix Spikes

Replicate Analysis

Calculation Checks

References

8 SPECIAL CONSIDERATIONS ASSOCIATED WITH BIOACCUMULATION ANALYSIS

Introduction

Sampling Unique to Tissues

Tissue Processing

Storage

Overview of Extraction, Digestion, and Extract Cleanup

Extraction of Semivolatile Organic Compounds

Cleanup and Separation of Semivolatile Organic Compounds

Digestion Samples for Metals Analysis

Lipid Weight Determination (after extraction)

References

9 QUALITY ASSURANCE FOR BIOASSAYS

Introduction

Sample Collection, Transport, and Storage

Data Completeness and Format

Data Validation and Assessment

Analytical Methods

Test Precision

Positive Controls

Negative Controls

References

10 QUALITY ASSURANCE FOR BENTHIC MACROINVERTEBRATES

Introduction

Sample Collection, Transport, and Storage

Data Completeness and Format

Data Validation and Assessment

Sample Sorting

Taxonomic Identifications

Intrastation Variability

References

APPENDIX A: LIST OF ACRONYMS AND GLOSSARY

APPENDIX B: PSEP/PSDDA WORKSHEETS

APPENDIX C: TREATMENT OF CHEMISTRY DATA: CALCULATIONS AND QUALIFIER

CODES

PTI Environmental Services. 1989. Puget Sound Dredged Disposal Analysis Guidance Manual; Data Quality Evaluation for Proposed Dredged Material Disposal Projects. Prepared by PTI Environmental Services for the Washington Department of Ecology, Sediment Management Unit, Olympia, WA.

Media in which methods can be used: Water ✓ Sediment Biota

Keywords:

Sediment quality, sampling, QA/QC, data analysis/management, grain size, oxygen demand, pH, metals, organics, pesticides, PCBs, PAHs, toxicity/bioassay, bioaccu-

mulation

Abstract

This manual provides guidance for the review of data submitted to the U.S. Army Corps of Engineers, Seattle District (Corps) by applicants for dredging permits. This data review process is termed QA1. The purpose of QA1, as described in the Puget Sound Dredged Disposal Analysis (PSDDA) management Plan (PSDDA 1988a), is to establish if data are acceptable for determining the suitability of sediments for unconfined, open-water disposal. The handling, organization, and synthesis of sediment data described here are designed to streamline the data review process. The goal of QA1 is to ensure that sediment data from proposed projects have received adequate quality assurance (QA) review prior to a determination of suitability. To meet this need, field and laboratory QA information relevant to PSDDA data review is compiled for each project by the field teams and analytical laboratories responsible for sample collection and testing.

The sequence of major QA activities associated with a project can be divided into four phases:

- · project planning
- data collection
- data quality review
- data use

The process of reviewing chemical and biological data to determine if they are suitable for incorporation in the sediment quality values database is termed QA2. QA2 is described in detail in the Data Validation Guidance Manual for Selected Sediment Variables (PTI 1989). QA2 will follow QA1 to establish if the data are acceptable for incorporation into the sediment quality values database maintained by the Washington Department of Ecology.

[extracted from document]

Contact: (206) 407-6908

TABLE OF CONTENTS

1 INTRODUCTION

Background

Overall QA Perspective

Project Planning

Data Collection

Data Quality Review

Data Use

General QA1 Approach

Report Organization

2 KEY ELEMENTS OF PSDDA AND THEIR INTEGRATION INTO QA1

PSDDA Sampling Strategy

Number and Location of Sediment Samples

Sampling and Testing Sequence

Specification of Analytical Variables, Protocols, and Control Limits

Chemical Variables, Protocols, and Control Limits

Biological Variables, Protocols, and Control Limits

Sampling and Analytical Information Included in QA1

3 QA1 CHECKLIST FORMATS

Dredgers Checklist

Checklist for Conventional Variables in Sediment

Checklist for Metals in Sediment

Checklist for Semivolatile Organic Compounds (A/B/N and PCB/ Pesticides) in Sediment

Checklist for Volatile Organic Compounds in Sediment

Checklist for Bioaccumulation Data

Checklist for Amphipod Mortality Bioassay

Checklist for Juvenile Infauna Bioassay

Checklist for Sediment Larval Bioassay

Checklist for Microtox™ Bioassay

Summary QA1 Matrix

4 GUIDANCE FOR QA1 REVIEW AND INTERPRETATION

Has the Sampling Plan Been Followed?

Is the Data Set Complete?

Is the Format Acceptable?

Chemistry Data

Bioassay Data

Are the Blanks Acceptable?

Is the Accuracy Acceptable?

Is the Precision Acceptable?
Chemistry Data
Bioassay Data
Are the Controls Acceptable?
Are the Bioassay Testing Conditions Appropriate?
Are the Bioassay Sample Sizes Adequate?

REFERENCES

GLOSSARY

APPENDIX A: REQUIRED LABORATORY DOCUMENTATION

APPENDIX B: EXAMPLE CHECKLISTS

Puget Sound Estuary Program. 1991. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. U.S. Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle WA.

Media in which methods can be used:

Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, OA/OC, pH, grain size, salinity, total solids, turbidity, temperature, nutrients, metals, dissolved oxygen, oxygen demand, organics, PAHs, PCBs, toxicity/bioassays, population/ community, pathogenic organisms, data analysis/management

Abstract

This document presents recommended protocols for measuring selected environmental variables in Puget Sound. The objective is to encourage most investigators conducting studies such as monitoring programs, baseline surveys, and intensive investigations to use equivalent methods whenever possible. If this objective is achieved, most data from future sampling programs should be comparable among studies. It is recognized that alternative methods exist for many of the variables considered in this document and that those methods may produce data of equal or better quality than do the recommended methods. It is also recognized that future research or other circumstances may require modification or replacement of one or more of the recommended methods.

The recommendations in this document pertain primarily to the methodological specifications required to measure the selected environmental variables. Recommendations for study design and data analysis generally were not included because those considerations vary widely depending upon the objectives of individual studies.

Twelve groups of variables were identified as having the highest priority for protocol development or documentation. They include:

- · station positioning considerations
- · conventional sediment variables
- concentrations of organic compounds in sediment and tissue
- · concentrations of metals in sediment and tissue
- sediment bioassays
- characteristics of soft-bottom demersal fish assemblages
- · concentrations of chemicals in marine mammal tissue
- pathological conditions in fish livers
- · benthic infaunal variables
- · conventional marine water variables
- conventional fresh water variables
- microbiological indicators

Protocols to evaluate each of the environmental variables are prepared and are available as stand-alone reports. However, for the convenience of the user, all protocols are also available in a loose-leaf binder format. For conciseness in this bibliography, all protocols are presented as a single document.

030

In addition to the recommended protocols for each group of variables, a section on general quality assurance/quality control (QA/QC) procedures is included in this document. That section identifies the major QA/QC concerns that should be addressed when collecting and analyzing environmental samples from Puget Sound.

The formats for most protocols are similar to facilitate use of the entire document. The following major sections are presented for most protocols: Use and Limitations—Describes what a variable measures and major limitations to the use of the variable. Field Procedures—Describes container type, special cleaning procedures, collection techniques, sample quantity, preservation technique, storage conditions, and maximum holding time. Laboratory Procedures—Describes analytical procedures (or provides citations), laboratory equipment, sources of error, and QA/QC specifications. Data Reporting Requirements—Describes the kinds of data that the analytical laboratory should report and the units in which the data should be reported.

[extracted from document]

Contact: (706) 442-1368

TABLE OF CONTENTS

- 1 INTRODUCTION
- 2 GENERAL QA/QC CONSIDERATIONS FOR COLLECTING ENVIRONMENTAL SAMPLES IN PUGET SOUND

Introduction

Sampling Preparation

Sampling Procedures

Health and Safety

Station Location

Sampling Handling

Field Procedures

Sample Shipment

Laboratory Procedures

Shipboard Laboratory Analyses

References

3 RECOMMENDED PRÒTOCOLS FOR STATION POSITIONING IN PUGET SOUND

Introduction

Positioning Method Selection Procedure

Development of Sampling Program

Physical Conditions at the Study Site

Equipment and Analyses

Station Separation

Reoccupation

Program-Imposed Constraints

Definition of Positioning Requirements

Review and Selection of Positioning Method

Implementation of Positing Method

Recordkeeping Requirements

Field Records

Initial Survey Description

Day Log Entries

Station Log Entries

Reporting Requirements

Recommended Positioning Accuracies

Classification of Sampling

Recommended Accuracy

Recommended Positioning Methods

References

Appendix A: Site-Related Positioning Limitations

Appendix B: Position Error Analysis

Appendix C: Positioning Methods and Considerations for Sampling in

Puget Sound

Optical Positioning Techniques

Electronic Positioning Techniques

Range-Azimuth Systems

References

Appendix D: Evaluation of Positioning Methods

Positioning Procedures in Use in Puget Sound

Candidate System Overview

Screening Criteria

4 RECOMMENDED PROTOCOLS FOR MEASURING CONVENTIONAL SEDIMENT VARIABLES IN PUGET SOUND

Introduction

Collection of Surficial Sediments for Physical and Chemical Variables

Introduction

Design of Sampler

Penetration of Depth

Operation of Sampler

Sample Acceptability Criteria

Sample Collection

Particle Size

Use and Limitations

Field Procedures

Collection

Processing

Laboratory Procedures

Analytical Procedures

QA/QC Procedures

Data Reporting Requirements

Total Solids

[Same Subsections as Particle Size]

Total Volatile Solids (TVS)

[Same Subsections as Particle Size]

Total Organic Carbon (TOC)

[Same Subsections as Particle Size]

Oil and Grease (Freon Extractable)

[Same Subsections as Particle Size]

Total Sulfides

[Same Subsections as Particle Size]

Total Nitrogen

[Same Subsections as Particle Size]

Biochemical Oxygen Demand (BOD)

[Same Subsections as Particle Size]

Chemical Oxygen Demand (COD)

[Same Subsections as Particle Size]

References

5 RECOMMENDED PROTOCOLS FOR MEASURING ORGANIC COMPOUNDS IN PUGET SOUND SEDIMENT AND TISSUE SAMPLES

Introduction

Organic Compounds in Sediments

Uses and Limitations

Sampling Preparation and Field Procedures

Laboratory Analytical Procedures

Organic Compounds in Tissue

Uses and Limitations

Sampling Preparation and Field Procedures

Laboratory Analytical Procedures

Instrumental Procedures

QA/QC Procedures and Requirements

Surrogate Spike Compounds (Recovery Internal Standards)

Injection Internal Standards

Method Blanks

Standard Reference Materials (SRM)

Matrix Spikes

Method Spikes

Analytical Replicates

Field Replicates

Initial Calibration

Ongoing Calibration

Data Reporting Requirements

Recovery and Blank Corrections

Lower Limit of Detection

Cost Implications

References

Glossary

Appendix A: U.S. EPA Contract Laboratory Program: Procedures for

Analysis of Extractable Organic Compounds in Soils/

Sediment

Appendix B: U.S. EPA Contract Laboratory Program: Procedures for

Analysis of Purgeable Organic Compounds

Appendix C: Established U.S. EPA Advisory Limits for Precision and

Accuracy and Method Performance Limits for Analytical

Procedures

Appendix D: GC/MS Identification of Target and Library Search

Compounds

6 RECOMMENDED PROTOCOLS FOR MEASURING METALS IN PUGET SOUND WATER, SEDIMENT, AND TISSUE SAMPLES

Introduction

General

Precautions and Limitations

Sample Collection

Precollection

Sources of Contamination

Water Column Samples

Particulate Samples

Surficial Sediment Samples

Tissue Samples

Analytical Methods

Sample Preparation

Instrumental Methods

Recommended Instrumental Methods

Metals Speciation

Quality Assurance/Quality Control

QA/QC Measures Initiated by the Analytical Laboratory

QA/QC Measures Initiated in the Field

Corrective Actions

Data Reporting

Data Report Package

Backup Documentation

References

Appendix A: Selection of Metals for Protocol Development

Appendix B: Excerpts from Exhibits B, D, E, and G (U.S. EPA 1985)

Appendix C: Elutriate and Fractionation Methods (Plumb 1981)

Appendix D: Total Acid Digestion Method for Sediment (Rantala and

Loring 1975)

Appendix E. HNO₃/HCIO₄ Digestion Method for Tissue (Tetra Tech

1986a)

Appendix F: APDC/MIBK Extraction Method For Salt Water

(Greenberg et al. 1985)

Appendix G: DFAA Instrumental and Spectrophotometric Methods

(U.S. EPA 1979a)

7 RECOMMENDED GUIDELINES FOR CONDUCTING LABORATORY BIOASSAYS ON PUGET SOUND SEDIMENTS

Introduction

Bioassay Selection

Field Collection of Subtidal Surficial Sediments

Design of Sampler

Penetration Depth

Operation of Sampler

Sample Acceptability Criteria

Sample Collection

Sample Homogenization

Concurrent Collection of Sediment Chemistry and Bioassay Sample

Replication of Bioassays

General Quality Assurance/Quality Control Guidelines

Negative Controls

Positive Controls

Test Organisms

Reference Test Samples

Sediment Holding Time

Blind Testing

Maintenance/Measurement of Water Quality

Equipment Cleaning Procedures

Standard Laboratory Procedures

Puget Sound Reference Areas

Sediment Chemistry

Sediment Bioassays

General Habitat

Amphipod Sediment Bioassay

Use and Limitations

Field Procedures

Collection

Processing

Laboratory Procedures

Test Animals

Control Sediment

Test and Reference Area Sediment

Bioassay Seawater

Facilities and Equipment

Bioassay Procedure

Experimental Design

Data Reporting Requirements

Bivalve Larvae Sediment Bioassay

Use and Limitations

Field Procedures

Laboratory Procedures

Bioassay Species

Bioassay Sediment

Bioassay Seawater

Facilities and Equipment

Bioassay Procedure

Controls

Reference Area Sediment

Data Reporting Requirements

Anaphase Aberration Sediment Bioassay

Use and Limitations

Field Procedures

Laboratory Procedures

Cell Cultures

Sediment Extraction

Culture Conditions

Bioassay Seawater

Bioassay Procedure

Controls

Data Reporting Requirements

Microtox Sediment Bioassay - Organic Extract

Use and Limitations

Field Procedures

Laboratory Procedures

Facilities and Equipment

Sediment Extraction

Bioassay Procedure

Controls

Data Reporting Requirements

Microtox Sediment Bioassay - Saline Extract

Use and Limitations

Field Procedures

Laboratory Procedures

Preparation of Sediment Extraction

Bioassay Procedure

Controls

Data Reporting Requirements

Juvenile Polychaete Sediment Bioassay

Overview

Introduction

Species Sensitivity

Ecological Importance

Use and Limitations

Field Procedures

Laboratory Procedures

Test Animals

Control and Reference Sediments

Test Sediments

Bioassay Seawater

Bioassay Procedure

Experimental Design

Data Reporting Requirements

References

8 RECOMMENDED GUIDELINES FOR SAMPLING SOFT-BOTTOM DEMERSAL FISHES BY BEACH SEINE AND TRAWL IN PUGET SOUND

Introduction

Use and Limitations

Examples of Recent Studies of Demersal Fishes

Study Design Considerations

Project Objectives

Sampling Schedule

Habitat Coverage

Replication

Recommended Equipment

Standard Equipment

37-m Beach Seine

7.6-m Otter Trawl

400-mesh Easter Otter Trawl

Alternate Equipment

9-m Beach Seine

3-m Beam Trawl

Field Procedures

General Guidelines for Use of the Recommended Equipment

Deployment and Retrieval

Beach Seines

Trawls

Catch Processing

Field Records

Laboratory Procedures

Laboratory Methods

Laboratory Records

Quality Assurance/Quality Control

Quality Assurance/Quality Control in the Field

Quality Assurance/Quality Control in the Laboratory

Data Reporting Requirements

References

9 RECOMMENDED GUIDELINES FOR SAMPLING MARINE MAMMAL TISSUE FOR CHEMICAL ANALYSES IN PUGET SOUND AND ADJACENT WATERS

Introduction

Background Information

Rationale for Marine Mammal Tissue Studies

Sources of Information

Legal Issues Related to Collection of Marine

Mammal Tissues

Objectives for Marine Mammal Contamination Studies

Need for Natural History Information

Marine Mammals in Puget Sound and Adjacent Waters

Harbor Seal (Phoca vitulina richardsi)

California Sea Lion (Zalophus californianus)

Northern Sea Lion (Eumetopias jubatus)

Harbor Porpoise (Phocoena phocoena)

Dall's Porpoise (Phocoenoides dalli) Gray Whale (Eschrichtius robustus)

Killer Whale (Orcinus orca)

Minke Whale (Balaenoptera acutorostrata)

Studies of Chemical Contamination in Puget Sound Marine Mammals

Effects of Chemical Contaminants on Marine Mammals

Factors Affecting Contaminant Concentrations in Marine Mammals

Animal-Specific Characteristics

Sampling and Analysis Methods

Priorities for Sample Collection and Analysis

Species

Tissues

Age and Sex

Location

Priority Contaminants in Marine Mammals

Chlorinated Pesticides and PCBs

Dioxins and Furans

Metals and Trace Elements

Petroleum Hydrocarbons and Metabolites

Radionuclides

Other Contaminants

Recommended Tissue Collection Procedures

Carcass Condition

Sample Containers

Sampling Equipment

Sample Collection

General Specifications

Procedural Steps in Sample Collection From Dead Specimens Sampling Recommendations for Live Animals

Sample Storage

Labeling

Shipping Procedures

Collection of Supporting Data

Essential Information

Date and Time

Species

Sampling Location

Condition of Carcass

Standard Length

Sex

Blubber Thickness

Other Useful Information

Photographs

Axillary Girth

Weight

Fluke Width and Other Measurements for Cetaceans

Gross Abnormalities, Injuries, Lesions, and Parasites

Histology

Reproductive Condition

Stomach Contents

Sample Collection for Aging

Information on Age of Neonates

Cause of Death

Ancillary Data

Microbiology

Examination for Natural Toxins

Genetic Studies

QA/QC Activities

Data Reporting

10 RECOMMENDED PROTOCOLS FOR FISH PATHOLOGY STUDIES IN PUGET SOUND

Review of Historical Data

Hepatocarcinogenesis Models for Fishes

Laboratory Studies

Field Studies

Recommended Protocols for Field Studies in Puget Sound

Study Design

Species Selection

Age Limits

Sample Size

Sampling Season

Station Location

Field Sampling Procedures

Fish Acquisition

Holding Time and Conditions

Labeling and Coding

Liver Subsampling

Tissue Fixation

Ancillary Data

Laboratory Procedures

Tissue Processing

Histopathological Evaluations

Quality Assurance/Quality Control

Data Analysis

Age and Sex Effects

Growth and Condition

Comparisons Among Stations

Relationships with Ancillary Variables

11 RECOMMENDED PROTOCOLS FOR SAMPLING AND ANALYZING SUBTIDAL BENTHIC MACROINVERTEBRATE ASSEMBLAGES IN PUGET SOUND

Introduction

Study Design Considerations

Kind of Sampler

Area of Sampler

Sample Replication

Sieve Mesh Size

Sieving Location

Use of Relaxants

Use of Stains

Level of Taxonomy

Sampling Season

Protocols for Sampling and Analysis

Field Procedures

Pre-collection Preparation

Collection

Processing

Laboratory Procedures

Equipment and Testing

Preservative Preparation

Analytical Procedures

QA/QC Procedures

Calibration and Preventive Maintenance

Quality Control Checks

Corrective Action

Data Quality and Reporting Requirements

12 RECOMMENDED GUIDELINES FOR MEASURING CONVENTIONAL MARINE WATER-COLUMN VARIABLES IN PUGET SOUND

Introduction

Collection and Analysis of Water-Column Samples

Water Bottles

In Situ Instrumentation

Shipboard Laboratory Analyses

Measurement of Specific Variables

рН

Field Procedures

Laboratory Procedures

Salinity

Field Procedures

Laboratory Procedures

Temperature

Field Procedures

Laboratory Procedures

Transparency

Turbidity

Field Procedures

Laboratory Procedures

Total Suspended Solids

Field Procedures

Laboratory Procedures

Dissolved Oxygen (Modified Winkler Method)

Field Procedures

Laboratory Procedures

Dissolved Oxygen (Probe Method)

Field Procedures

Laboratory Procedures

Nitrogen (Ammonia)

Field Procedures

Laboratory Procedures

Nitrogen (Nitrite)

Field Procedures

Laboratory Procedures

Nitrogen (Nitrate)

Field Procedures

Laboratory Procedures

Phosphate

Field Procedures

Laboratory Procedures

Silicate

Field Procedures Laboratory Procedures

Chlorophyll-a

Field Procedures

Laboratory Procedures

Total and Fecal Coliform Bacteria

13 RECOMMENDED PROTOCOLS FOR MEASURING CONVENTIONAL WATER QUALITY VARIABLES AND METALS IN FRESH WATER OF THE PUGET SOUND REGION

Introduction

General Considerations for Sampling and Analyzing Conventional Variables

Types of Sampling

Recommendations for Manual Grab Sampling

Sampling Locations

Sample Collection

Sample Heading

Sample Size

Analytical Methods and Detection Limits

Quality Assurance/Quality Control Guidelines

Definitions

Criteria for Acceptance of QA/QC Results and Corrective Actions

Data Reporting Requirements

Cleaning Methods

Recommended Methods for Measuring Flow

Use and Limitations

Field Procedures

Site Selection Criteria

Streamflow Measurement Using a Current Meter

Streamflow Measurement Using a Staff Gauging Station

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Temperature

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Conductivity

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Dissolved Oxygen

Use and Limitations

Field Procedures

Azide-Modified Winkler Method

Membrane Electrode Method

Laboratory Procedures

Azide-Modified Winkler Method

Membrane Electrode Method

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring pH

Use and Limitations

Field Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Alkalinity

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Total Hardness

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Total Suspended Solids

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Turbidity

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Ammonia-Nitrogen

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Nitrite + Nitrate-Nitrogen

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Total Phosphorus

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Orthophosphate-Phosphorus

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Fecal Coliform Bacteria

Use and Limitations

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

Recommended Methods for Measuring Metals

Introduction

Use and Limitations

Sample Containers

Sampling Equipment

Cleaning Methods

Field Procedures

Laboratory Procedures

QA/QC Procedures

Data Reporting Requirements

References

Appendix A: A Chelate-Coprecipitation Method

Appendix B: A Volatilization Method by Hydride Generation

14 RECOMMENDED PROTOCOLS FOR MICROBIOLOGICAL STUDIES IN PUGET SOUND

Introduction

Microbiological Measurements Currently Made in Puget Sound

Recommendations for Future Studies

Bacterial Indicators

Primary Pathogens

Special Sampling Considerations

Water Column

Sediments

Tissue

Uses and Limitations of Recommended Bacterial Indicators

Fecal Coliform Bacterial and Fecal Coliform Bacteria/E. coli

Enterococci

Clostridium Perfringens

Laboratory Procedures for Recommended Bacterial Indicators

Quality Assurance/Quality Control (QA/QC)

San Francisco Estuary Institute. 1994. Quality Assurance Project Plan for the Regional Monitoring Program for Toxic Contaminants in the San Francisco Estuary. San Francisco Estuary Institute, Richmond, CA. pp. 57.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, sampling, QA/QC, organics, inorganics, metals, bioaccumulation, toxicity/bioassay, salinity, nutrients, chlorophyll, temperature, pH, dissolved oxygen, total organic carbon, pesticides, PAHs, PCBs, organotins, population/community

Abstract

A regional monitoring program for toxic contaminants in the San Francisco Estuary has been established by the San Francisco Bay Regional Water Quality Control Board. The objectives are to obtain data describing trace concentrations of toxic elements and organics within the estuary, to determine seasonal and annual trends in water quality, and to develop a database to determine long-term trends in concentrations of toxic contaminants in water and sediments.

This quality assurance project plan details the methods for the collection and analysis of water, sediment, and biological samples, including the collection and deployment of uncontaminated bivalves used for bioaccumulation studies, sampling equipment, transport of samples to analytical laboratories, sample holding times, preservation of samples until analyzed, analytical equipment, analysis of samples, storage of archived samples, and proper disposal of samples after analysis.

Data quality objectives, including, precision, accuracy, completeness, detection limits, frequency of quality control sampling, acceptance criteria, and corrective actions are summarized for water, sediment, and tissue analyses.

Analytical procedures are summarized with reference to peer-reviewed publications. An extensive list of references detailing these trace analytical methods for metals and organics is provided. [extracted from document]

Contact: (510) 231-9539

- 1 GENERAL PROJECT INFORMATION
- 2 PROJECT OBJECTIVES AND DATA USAGE Overall Project Objectives Project Data Usage
- 3 SCHEDULE OF TASKS AND PRODUCTS
- 4 PROJECT ORGANIZATION AND RESPONSIBILITY
- 5 DATA QUALITY OBJECTIVES

Precision

Accuracy and Completeness

Detection Limits

Representativeness and Comparability of Data

6 SITE SELECTION AND IDENTIFICATION

Criteria for Selection and Location of Sampling Sites

Site Identification

Site Codes

7 FIELD LOGISTICS AND SAMPLING PROCEDURES

Cruise Plans, Vessels, and Schedules

Cruise Plans

Cruise Vessels

Cruise Schedules

Field Sampling Procedures

Water Sampling

Equipment and Procedures - Organics

Equipment and Procedures - Trace Elements

Equipment and Procedures - Aquatic Toxicity

Equipment and Procedures - Ancillary

Sediment Sampling

Equipment

Procedures

Bioaccumulation in Bivalve Tissues

Collection

Installation of Moorings and Deployment of Bivalves

Mooring Examination and Maintenance

Retrieval

Benthic Infauna Sampling
Equipment and Procedures
Field Records Procedures
Immediate Sample Handling

8 SAMPLE CUSTODY AND STORAGE

Field Custody Procedures
Interim Sample Storage and Transfer
Water Samples
Sediment Samples
Bivalve Samples
Ancillary Samples and Electronic Data
Sample Custody and Storage at Each Laboratory

9 ANALYTICAL PROCEDURES

Trace Elements

Organic

Ancillary Measurements in Water and Sediment

Aquatic and Sediment Toxicity

Benthic Infauna

Condition Index

- 10 CALIBRATION PROCEDURES AND PREVENTATIVE MAINTENANCE
- 11 DATA DOCUMENTATION, REDUCTION, VALIDATION, AND REPORTING
- 12 SYSTEM AUDITS
- 13 QA REPORTS TO PROGRAM MANAGER
- 14 LITERATURE CITED
- 15 DATA QUALITY OBJECTIVES TABLES

San Francisco Estuary Project. 1991. Quality Assurance in Environmental Analysis Applied to the San Francisco Estuary. Prepared by the Aquatic Habitat Institute for the San Francisco Estuary Project, Oakland, CA. pp. 72.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, QA/QC, sampling,

data management

Abstract

This report provides an overview of the key concepts of quality assurance (QA) as well as background material and definitions required for an effective discussion of QA. The report also discusses historical problems associated with environmental chemical analysis of elemental and organic contaminants, and highlights the fact that such problems arise as much from rapid advances in analytical methodology as from inadequate QA.

The report presents an outline QA program that might be applied to environmental analysis or monitoring of the San Francisco Estuary and which may be applied to other estuaries. The report does not provide a single or specific approach to quality assurance. But in view of the requirements to meet a variety of data quality objectives, the report provides a reasonably comprehensive listing of the elements of quality assurance as a part of a coherent, estuary-wide monitoring program and as it would apply to collecting, processing, and analyzing samples.

The report includes summaries of QA programs currently applied in the San Francisco Estuary for a number of contaminants of concern. The appendix contains information on existing QA programs employed in monitoring programs across the U.S., including contact names, addresses, and telephone numbers of personnel in charge of or involved in each QA program. [extracted from document]

Contact: (510) 231-9539

- 1 EXECUTIVE SUMMARY
- 2 PREFACE
- 3 INTRODUCTION

Data Quality Objectives

Quality Assurance Defined

Precision and Accuracy

Background

Contaminants of Concern

4 HISTORIC AND CURRENT PROBLEMS IN QUALITY ASSURANCE

Introduction

Pollutant Identification

Analyte Detectability

Analyte Quantification

Sample Contamination

Data Verification and Validation

Personnel

Summary

5 QUALITY ASSURANCE PROGRAMS

Introduction

Quality Assurance Applied to the San Francisco Estuary

Sample Acquisition

Laboratory Intercalibration

Documentation

Data Management

6 EXISTING QA PROGRAMS IN THE SAN FRANCISCO ESTUARY

Review of Existing Programs

Local Quality Assurance Programs

QA Procedures in Regional and National Programs

Summary

- 7 CONCLUSIONS AND RECOMMENDATIONS
- 8 REFERENCES

APPENDIX

State of Maine Department of Environmental Protection. 1987. Methods for Biological Sampling and Analysis of Maine's Waters. State of Maine Department of Environmental Protection, Augusta, ME. pp. 19.

Media in which methods can be used:

Water

Sediment

✓ Biota

Keywords:

Biological characterization, sampling, population/community, data analysis

Abstract

The biological classification of Maine's inland waters was authorized by the Maine State Legislature with the passage of M.R.S.A. 39 Public Law Chapter 698 - The Classification System for Maine Waters (April, 1986). This law states that it is the State's objective "to restore and maintain the chemical, physical and biological integrity" of its waters, and establishes a water quality classification system to enable the State to manage its waters so as to protect their quality. The classification system further establishes minimum standards for each class, which are based on designated use, and related characteristics of those uses, for each class of water.

The Department of Environmental Protection, has collected a large, standardized database consisting of benthic macroinvertebrate samples from above and below all significant licensed discharges in the State, as well as from some relatively unperturbed areas. These sampling locations were chosen to represent the range of water quality conditions in the State. This information is necessary in order to develop criteria (numerical and character-related) which are specific to the natural biotic community potential of the State of Maine.

The sampling locations were also selected to provide information on the presumed worst case condition of all river and stream reaches known to be significantly affected by human activity, in order to assign classifications to those reaches. Thus, the benthic macroinvertebrate data collected to date are intended to serve two purposes:

- generation of qualitative and quantitative biological classification criteria specific to the sampling protocol adopted by the Department
- assignment of reach by reach attainment of biological class, using the presumed worst case location within the reach, and based upon protocol and criteria developed through analysis of the entire data set

This manual sets forth the standardized practices and procedures which will be used by the Department to acquire data to fulfill these two purposes. [extracted from document]

Contact: (207) 289-3901

1 CLASSIFICATION ATTAINMENT EVALUATION

2 GENERAL METHODS

Classification Attainment Evaluation Qualifications of Sampling Personnel

Apparatus, Equipment, Supplies, Instruments

Sampling Season

Sample Size

Site Selection Criteria

Site Evaluation

Sampler Exposure Period, Placement, and Retrieval

3 LABORATORY METHODS

Qualifications of Laboratory Personnel

Sample Preservation

Sample Labeling

Subsampling

Sample Taxonomy

4 TESTS AND MEASURES OF COMMUNITY STRUCTURE AND FUNCTION

Calculation of Tests and Measure of Community Structure and Function

APPENDIX A: FIELD DATA SHEET

APPENDIX B: INSTRUCTION FOR MACROINVERTEBRATE SORTERS

APPENDIX C: TAXONOMIC KEYS

APPENDIX D: AQUATIC LIFE STANDARDS FOR THE STATE OF MAINE

APPENDIX E: APPLICABLE MEASURES OF COMMUNITY STRUCTURE AND

FUNCTION

APPENDIX F: ALGORITHMS FOR INDICES AND MEASURES OF COMMUNITY

STRUCTURE

Texas Parks and Wildlife Department, Fisheries and Wildlife Division, Coastal Fisheries Branch, Austin, TX.

Media in which methods can be used: Water Sediment Biota

Keywords: Biological characterization, sampling, data management, population/community

Abstract

The Texas Parks and Wildlife Department (TPWD) and the National Marine Fisheries Service (NMFS) are responsible for gathering information on the commercial landings of seafood in Texas. The Texas code requires that all licensed seafood dealers report all seafood purchases on a monthly basis either to TPWD or NMFS. This manual specifies the data collection procedures and the duties of the TPWD agents in compiling and maintaining accurate marine landings data.

Instructions for completing the monthly reports, example forms and with data codes, and lists of licensed dealers and species codes are included. [compiled after review]

Contact: (512) 389-4800

- 1 OBJECTIVES
- 2 DESIGN
- 3 DATA COLLECTION
- 4 MONTHLY MARINE PRODUCTS REPORT
- 5 DUTIES OF TPWD STATISTICAL AGENT
- 6 HOW THE MMPR IS COMPLETED BY SEAFOOD DEALERS
- 7 HOW THE MMPRFS IS COMPLETED BY TPWD STATISTICAL AGENT
- 8 PROCEDURE FOR PROCESSING MMPRFS
- APPENDIX A: TPWD/NMFS COOPERATIVE COMMERCIAL STATISTICS AGREEMENT
- APPENDIX B: TEXAS LANDINGS DEFINITION AND FORMAT
- APPENDIX C: CONVERSION FACTORS FOR FINFISH AND SHELLFISH
- APPENDIX D: PROCEDURES FOR PROCESSING COMMERCIAL LANDING DATA

THROUGH AUSTIN STAFF

Submission of MMPRFS

Processing MMPRFS Verification Listings

Processing Preliminary Texas Landings Printout
Processing NMFS Field Sheet Verification Listings

Processing Final Texas Landing Printouts

Data Sort by Fiscal Year (FY)

Data Sort by Water Area Within County

Data Sort by County

LITERATURE CITED

Texas Parks and Wildlife Department. 1993. Marine Resource Monitoring Operations Manual. Texas Parks and Wildlife Department, Fisheries and Wildlife Division, Coastal Fisheries Branch, Austin, TX.

Media in which methods can be used:

Water **Sediment** ✔ Biota

Keywords:

Biological characterization, sampling, data management, QA/QC, population/

community

Abstract

This manual is designed for use by Texas Parks and Wildlife personnel who are responsible for and who participate in finfish and shellfish monitoring programs. Specific operating procedures for bag seines, trawls, oyster dredges, beach seines, and gill nets are presented. The goals of the monitoring program are to provide statistically reliable long-term trend information on relative abundance, catch-per-effort, size, and species composition of both finfish and shellfish.

Procedures for sample site selection, sampling, tag and release studies, and data entry are described in detail. Further data analysis and management procedures for editing and computer entry of field sampling data are also included.

This manual is updated annually and contains procedures for special studies not included in the annual resource monitoring programs. Special studies included in this edition include fish kill assessments, a bottom longline study, and a specific area study to determine the presence and abundance of biota within the Rio Grande River.

[compiled after review]

Contact: (512) 389-4800

1 INTRODUCTION

2 GEAR DESCRIPTION

Gill Net

Bag Seine

Beach Seine

Trawl

Oyster Dredge

3 SAMPLE AREA AND FREQUENCIES

Definitions

Sample Area and Gear Used

Sample Periods and No. Samples/Period by Gear

4 SAMPLE SITE IDENTIFICATION AND SELECTION

Definitions

Gill Net, Bay and Beach Bag Seine, and Beach Seine Sample Site Selection

Trawl Sample Site Selection

Oyster Sample Site Selection

5 SAMPLE PROCEDURES

General Instructions

Gill Net

Bay Bag Seine

Beach Bag Seine

Beach Seine

Trawl

Oyster Dredge

Tagging Fish

6 DATA RECORDING

General Duties

Definitions

7 HOW TO COMPLETE MARINE RESOURCE HARVEST INVESTIGATION METEOROLOGICAL AND HYDROLOGICAL DATA SHEET

- 8 HOW TO COMPLETE MARINE RESOURCE MONITORING DATA SHEET
- 9 HOW TO COMPLETE SAMPLE SUMMARY SHEET

10 HOW TO COMPLETE MONTHLY TAGGING AND RETURN DATA SHEET

11 HOW TO COMPLETE FISH TAG INFORMATION SHEET

12 DUTIES OF TAG PROCESSOR

Duties

Duties if Additional Information Needed

Duties for "0" Code Data

13 DATA SHEET SUBMISSION AND EDITING

Duties of Coastal Fisheries Personnel

14 STOCKING

Objectives

Gear Description

Stocking Area

Stocking Frequency

Stocking Site Identification

Stocking Procedures

Data Recording

Data Disposition

15 COMPUTER CODING PROCEDURE -- DATA SUBMISSION

General Overview

Data Submission Frequency

Submission Procedure

How to Fill Out Data Transmittal Sheet

16 COASTAL FISHERIES MASTER FILE -- DATA EDITING PROCEDURES

Purpose

Overview

Edit Processing Requests

Rejections of Records or Processing Requests in Computer Edit Listings

How to Edit Key Fields

How to Edit Non-Key Fields

How to Delete Records

17 COASTAL FISHERIES MASTER FILE -- COMPUTER PROGRAMMED DATA FIELD CHECKS

Overview

Checks Made on All Record Types

Checks Performed Only on Hydro Records

Checks Performed Only on Resource and Harvest Records

Checks Performed Only on Resource Records

18 DOCUMENT SPECIFICATIONS

19 SPECIAL STUDIES

Special Study 7 -- Extra Tagging

Special Study 22 -- Summary of Returned Fish Tags

Special Study 33 -- Fish Kill Assessment

Objective

Sample Area

Sample Period

Sample Frequency

Sample Site Identification

Fish Kill Sample Selection

Fish Kill Sample Procedures

Data Recording

Data Disposition

Special Study 51 -- Gulf Red Drum Bottom Longline

Objective

Study Area

Study Period

Study Frequency

Gear Description

Study Procedures

Data Recording

Special Study 62 -- Rio Grande River Study

Objective

Study Area

Study Period and Frequency

Gear Description

Study Procedures

Data Recording

Data Disposition

Texas Parks and Wildlife Department. 1993. Marine Sport Harvest Monitoring Operations Manual. Texas Parks and Wildlife Department, Fisheries and Wildlife Division, Coastal Fisheries Branch, Austin, TX.

Media in which methods can be used:

Water

Sediment

✓ Biota

Keywords:

Biological characterization, sampling, data management

Abstract

This manual is prepared by the Texas Parks and Wildlife Department as a procedures manual for Department personnel for the routine monitoring of marine resource landings within the bay systems and along the Gulf of Mexico. Estimates of total catch, catch per unit effort, and size composition by species are tabulated from launch site and catch inspections, and interviews with private-boat and party-boat sport fishermen. This monitoring effort is designed to assist ecosystem and fishery managers in effectively regulating harvests.

Specific and detailed procedures are presented on topics such as sport fisherman interviews, boat access site inspections and data submission and editing. Examples of field monitoring documents and instructions on how they are to be completed are included.

This manual is updated annually. [compiled after review]

Contact: (512) 389-4800

1 INTRODUCTION

Objective

Design

Publication and Distribution

2 CURRENT SAMPLING DESIGN -- BOAT ACCESS SITES HIGH 93 - LOW 94

Survey Areas

Seasons and Day Types

Number of Surveys

Site Identification

How to Record Boat Access Site Changes

Interview Site Sampling

Proportional Random Sampling

Special Scheduling Considerations

Interviewing Procedures

Duties of Interviewer

How to Complete Marine Harvest Data Sheet

Using Arrows to Complete Marine Harvest Data Sheet

How to Complete Marine Resource/Harvest Investigation Meteorological-Hydrological Data Sheet

How to Complete Creel Sample Summary Sheet

Double Surveying an Access Site

Roving Counts

Duties of Roving Counter

How to Complete Marine Harvest Investigation Roving Count Data Sheet

3 DATA SUBMISSION AND EDITING

Duties of Coastal Fisheries Personnel

Data Submission

General Overview

Data Submission Frequency

Submission Procedures

How to Fill Out Data Transmittal Document

Computer Edit Listings

Purpose

Overview

Example of Hydro Data

Example of Harvest Monitoring Data

Example of Roving Count Data

Computer Programmed Data Field Checks

Overview

Checks Performed on All Record Types

Checks Performed on Hydro Records

Checks Performed on Harvest Records

Checks Performed on Rove Records

Data Editing Procedures

Overview

Edit Transaction Requests

Rejections of Records or Transaction Requests in Computer Edit Listings

How to Edit Key Fields

How to Edit Non-Key Fields

How to Delete Records

How to Handle an Add Request Rejection

How to Handle a Delete or Change Request Rejection

4 DOCUMENT SPECIFICATION

Bay System Descriptions

Major and Minor Bay Codes

Day and Season Codes

Strata Codes

Activity Codes

Harvest Gear Codes

Harvest Bait Codes

Trailer Location Codes

Boat-Access Codes

County Codes

State and Country Codes

Species Codes

5 SOURCE DOCUMENTS

Marine Harvest Data Sheet

Marine Resource/Harvest Investigation Meteorological-Hydrological Data Sheet

Creel Sample Summary Sheet

Marine Harvest Investigation Roving Count Data Sheet

Nomograph -- Weekday

Nomograph -- Weekend

Data Processing Division -- Data Transmittal Sheet

Fish Tag Information Sheet

6 HISTORY OF PROCEDURES -- ORIGINAL DESIGN

7 HISTORY OF PROCEDURES -- CURRENT DESIGN

Texas Water Commission. 1993. Water Quality Monitoring Procedures Manual. Water Quality Monitoring Team, Texas Water Commission, Austin, TX. pp. 262. Draft.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, QA/QC, sampling, pH, dissolved oxygen, depth, temperature, flow, salinity, turbidity, metals, organics, population/community, pathogenic organisms, data management

Abstract

This document provides a single source of information describing procedures used by Texas Water Commission personnel in the collection of surface water quality data. Procedures include sampling instrument calibration and maintenance, field sampling of physical parameters, fecal coliform, benthic biota, plankton, nekton and macrophytes, and the collection of water samples for analysis of metals and organics.

This manual also documents the quality assurance procedures used to demonstrate that surface water quality data collected and analyzed by Texas Water Commission personnel are of known and adequate quality. Data management procedures are also outlined and sample data forms are included. Appendices include examples of field and laboratory data forms, and parameter codes for data reporting.

This manual is updated annually by the Texas Water Commission. [extracted from document]

Contact: (512) 239-1000

1 QUALITY ASSURANCE

Quality Assurance Objective

Quality Assurance of Data and Sample Collection Methods

Annual Water Quality Monitoring Workshop

Quality Assurance of Laboratory Analysis

Quality Assurance of Field Sampling Methods/Split Samples

Quality Assurance of Data Storage

2 MULTI-PARAMETER INSTRUMENT CALIBRATION AND MAINTENANCE

Dissolved Oxygen Sensor

pH Sensor

Conductivity Sensor

Depth and Temperature Sensor

Post Calibration

General Maintenance

Water Quality Monitoring Instrument Calibration Notebook

3 FIELD MEASUREMENTS AND SAMPLE COLLECTION

Sample Site and Time Criteria

Field Data Notebook

Field Observations

Flow

Flow (cfs)

Flow Estimate

Flow Severity

Field Measurements

Water Temperature

Hq

Dissolved Oxygen

Specific Conductance

Secchi Disc Transparency

Salinity

Significant Precipitation

Fecal Coliform Bacteria

4 ANALYSIS OF FECAL COLIFORM SAMPLES

5 WATER SAMPLE COLLECTION

Routine Water Chemistry Sample

Metals-in-Water Sample-Inline Filter Method

Metals-in-Water Sample-Field/Laboratory Filtration Method

Organics-in-Water Sample
Routine Water Supply Sample
Reservoir Bottom-Water Sample

6 SEDIMENT SAMPLE

7 BIOLOGICAL SAMPLE

Biological Data Reporting Procedures
Freshwater Benthic Macroinvertebrate Sample
Plankton Sample
Nekton Sample
Macrophyte Sample

- 8 TISSUE SAMPLE
- 9 SHELF LIFE OF REAGENTS AND STANDARDS
- 10 SAMPLE PRESERVATION AND STORAGE

11 DATA MANAGEMENT PROCEDURES

Submission of Water Quality Data

Types of Forms

The Water Quality Request for Analysis (RFA) Form

Submitting Data Using the Field Data Entry System (FDE)

Governing Inventories of SMN Data File

Station Inventory

Instructions for Submitting Station Locations

Parameter Code Inventory

Report Capabilities of the Surface Water Quality Monitoring

Raw Data Report

Selective Data Report

Station Inventory Report

Parameter Code Inventroy Report

APPENDIX A: FISH KILL INVESTIGATION GUIDELINES

APPENDIX B: TEXAS COUNTY CODES AND TEXAS PARKS AND WILDLIFE

DEPARTMENT REGIONS

APPENDIX C: FISH KILL POLLUTION SOURCE CODES

APPENDIX D: EPA SPECIES NUMERIC CODE (FOR PARAMETER 74990)

r	н	н		r	-
	ı.		4	ч	"
L	Ų,	•	٠.		,

APPENDIX E: EPA ANATOMICAL NUMERIC CODE (FOR PARAMETER 74995) APPENDIX F: PARAMETER CODES FOR DESCRIBING BIOLOGICAL SAMPLING **EFFORT AND HABITAT** APPENDIX G: EXAMPLES OF FIELD AND LABORATORY DATA FORMS APPENDIX H: LITERATURE CITED APPENDIX I: DATA AND ANALYTICAL REPORTS FOR THE WATER QUALITY MONITORING DATA BASE APPENDIX J: OXYGEN CONTENT OF AIR-SATURATED FRESHWATER APPENDIX K: HYDROLAB CALIBRATION LOG. SELECTED TABLES AND **INSTRUCTIONS** APPENDIX L: PERFORMANCE SPECIFICATIONS FOR HYDROLAB INSTRUMENTS APPENDIX M: PARAMETER CODE VALUE WARING LIMITS APPENDIX N: SUMMARY OF SIGNIFICANT FIGURES FOR REPORTING FIELD **PARAMETERS** APPENDIX O: SUBMITTING STATION LOCATION INFORMATION APPENDIX P: SURFACE WATER MONITORING PROGRAM EQUIPMENT LIST APPENDIX Q: FORMAT FOR REPORTING SPECIAL STUDY INVESTIGATIONS

APPENDIX R: TEXAS TISSUE SAMPLING GUIDELINES

USACE. 1991. Assessing Bioaccumulation in Aquatic Organisms Exposed to Contaminated Sediments. Prepared by J. Clarke and V. McFarland, U.S. Army Corps of Engineers, Waterways Experiment Station, Environmental Laboratory, Vicksburg, MS. pp. 82. Miscellaneous Paper D-91-2.

Media in which methods can be used:

Water

✓ Sediment

✓ Biota

Keywords:

Sediment quality, bioaccumulation, data analysis

Abstract

The purpose of this paper is to provide a working document for Corps regulators and others involved in the environmental assessment of impacts on the aquatic environment from dredging operations and dredged material placement. Emphasis is placed on explanation of basic concepts concerning, and factors influencing, sediment contaminant bioaccumulation and bioavailability. The paper presents several numerical methods for assessing bioaccumulation, including a simple method for estimating theoretical bioaccumulation potential from sediment chemistry for neutral organic chemicals. Methods are also given for projecting contaminant concentrations in organism tissues when steady state is achieved, based on laboratory or field exposures to contaminated sediments. These assessments are presented in the context of the U.S. Environmental Protection Agency's tiered testing approach for dredged material evaluation. The various numerical methods for bioaccumulation assessment are illustrated and compared using step-by-step example calculations with hypothetical and actual data. [copied from document]

Contact: (601) 634-2571

1 INTRODUCTION

2 BASIC CONCEPTS

Definitions

Factors Influencing Bioaccumulation

Kinetics of Uptake and Elimination

3 ASSESSMENT OF BIOACCUMULATION

Environmental Assessment of Sediments

The Tiered Testing Approach

Bioaccumulation Potential (Tier II)

Bioaccumulation Testing (Tiers III and IV)

Example Calculations for Each Method of Bioaccumulation Assessment

4 REFERENCES

APPENDIX A: NOTATION

APPENDIX B: SUMMARY OF EQUATIONS

APPENDIX C: SAS PROGRAM STATEMENTS FOR PLOTTING BIOACCUMULATION

DATA AND FITTED REGRESSION CURVES

USAEWES. 1989. Quality Assurance Guidelines for Organic Analysis. U.S. Army Corps of Engineers, Environmental Laboratory, Waterways Experiment Station, Vicksburg, MS. Technical Report EL-89-18.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, QA/QC, sampling, organics, PAHs, PCBs, pesti-

cides, data analysis/management

Abstract

The U.S. Army Corps of Engineers has a fundamental responsibility to produce analytical data that are precise and accurate and meet environmental regulations imposed by the Clean Water Act, the Resource Conservation and Recovery Act, the Comprehensive Environmental Response, Compensation and Recovery Act, the Superfund Amendments and Reauthorization Act, the Safe Drinking Water Act, and the Toxic Substances Control Act. Numerous analytical methods for organic analysis are promulgated to provide the same basic information with only slight variations in procedures.

This report was written to provide general quality assurance guidelines for organic analysis with specific quality assurance/quality control requirements for the various methods This report summarized the most commonly used organic analysis procedures and reference sources. The sequence of events involved with sample analysis is presented from sample handling in the field to the final reporting of data. Quality assurance/quality control procedures are recommended for every step in the analytical process. Sampling plans, with respect to numbers of samples, site locations, and sampling procedures are beyond the scope of this report.

[copied from document]

Contact: (601) 634-2571

1 INTRODUCTION

Background

Purpose

Approach

Definitions

2 SAMPLE COLLECTION AND HANDLING

Sample Containers

Handling and Preservation

Chain-of-Command

Sample Receipt at the Laboratory

3 ANALYTICAL METHODS

The CWA

The RCRA

The SDWA

Contract Laboratory Program

Corps Projects for Dredged and Fill Material

Summarized Procedures with QC Recommendations

4 DATA MANAGEMENT, REPORTING, AND EVALUATION

Data Management

Data Reporting

Analysis Evaluation

5 RECOMMENDATIONS

REFERENCES

APPENDIX A METHOD SUMMARIES WITH RECOMMENDED QUALITY ASSURANCE/ QUALITY CONTROL CRITERIA

	<u>METHOD NO.</u>
Purgeable Organics by Gas Chromatograph/Mass Spectrometer	624
Purgeable Organics by GC/MS	8240
Halogenated Volatile Organics by Gas Chromatography	8010
Aromatic Volatile Organics	8020
Base Neutral and Acid Extractable Compounds by GC/MS	625
Semivolatile Organics by Capillary Column GC/MS	8270
Organochlorine Pesticides and Polychlorinated Biphenyls	608
Organochlorine Pesticides and PCBs	8080
Chlorinated Herbicides	8150
Polynuclear Aromatic Hydrocarbons	8100

U.S. EPA. 1978. Environmental Monitoring Series: Quality Assurance Guidelines for Biological Testing. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Las Vegas, NV. pp. 475. EPA 600/4-78-043. (NTIS: PB78-285369).

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, toxicity/bioassays, OA/OC

Abstract

This guideline document was prepared to address the need for a manual of quality assurance practices aimed specifically at biological testing. These guidelines draw from the good practices published for analytical and clinical laboratories, and incorporate observations made in a number of U.S. EPA laboratories, contractor laboratories, and biological research laboratories in general. As quality assurance aspects of biological testing depend on the particular test systems being used, these guidelines cover the general aspects of quality assurance, and then devote whole, separate sections to field research, aquatic bioassay, microbiologic assay, and mammalian bioassay. Hopefully, attention to the principles presented in this document will assist in improving the validity and integrity of the data generated by biological testing. [copied from document]

Contact (702) 798-2100

1 INTRODUCTION

Purpose of the Quality Assurance Guidelines

Valid Data

Integrity

Definitions

Quality Assurance

Biological Research

2 QUALITY ASSURANCE ELEMENTS

Quality Assurance Policy and Objectives

Laboratory Evaluation

Organization for Quality

Training for Quality

Other Objectives of a Quality Assurance Plan

Design and Analysis of Experiments

Description of Design of Experiments

Steps in the Design of Experiments

Essential Statistical Concepts

Experimental Models

Sampling

Background of Sampling

Randomization Procedure

Sampling Models

Selection of Size of Sample

Management of Sampling

Precision and Accuracy of Tests

Measurement of Precision and Accuracy

Control of Precision and Accuracy

Physical Environment of Research

Chemicals and Reagents

Purchase Specifications

Acceptance Specifications

Control of Chemicals and Reagents

Control of Test Subjects

Control of Animal Breeding

Good Animal Care Laboratory Practices

Control of Performance of Experiments

Quality Control Charts

Assessing Laboratory Performance

Interlaboratory Testing

Data Handling and Reports

References

3 QUALITY ASSURANCE IN BIOLOGICAL RESEARCH

Laboratory Management

On-Site Evaluation/Accreditation

Laboratory Personnel

Biological Sampling and Testing

Preparation of Study Protocols

References

Field Research

Field Sampling

Field Analysis

Sampling Method

Functional Tests

Field Bioassay

References

Aquatic Bioassay

Basic Requirements of Aquatic Bioassay

Experimental Procedures in Aquatic Bioassay

References

Microbiologic Assay

Microorganisms - Diagnostic Environmental Microbiology

Microorganisms - Mutagenicity Testing

Microorganisms - General Toxicity Testing

Cell Cultures - Mutagenicity Testing

Cell Cultures - Carcinogenicity Testing

Cell Cultures - General Toxicity Testing

Statistical Analysis

References

Mammalian Bioassay

Experimental Design Aspects

Conditions of Test

Good Animal Care Laboratory Practices

Bioassay Methods

Gross Observations

Reproduction and Teratology Studies

Mammalian Mutagenicity Tests

References

APPENDIX A: CHECK LIST FOR PLANNING TEST PROGRAMS

APPENDIX B: GOOD ANIMAL CARE LABORATORY PRACTICES

APPENDIX C: QUALITY CONTROL SURVEILLANCE CHECK LIST FOR

MICROBIOLOGY

U.S. EPA. 1978. Microbiological Methods for Monitoring the Environment - Water and Wastes.
 Edited by: R.H. Bordner, J.A. Winter, and P.V. Scarpino. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, OH. pp. 337. EPA 600/8-78-017. (NTIS: PB-290329).

 Media in which methods can be used: Water Sediment Biota

Keywords:

Water quality, sampling, pathogenic organisms, QA/QC

Abstract

This EPA manual provides uniform laboratory and field methods for microbiological analyses of the environment. The analytical methods are standardized procedures recommended for use in enforcement, monitoring, and research.

The environmental areas covered include:

- all waters fresh, estuarine, marine, shellfish-growing, agricultural, ground, surface, finished, recreational, and industrial processing
- all wastewaters of microbiological concern domestic waste effluents; industrial wastes such as food, dairy, meat, tanning, sugar, textile, pulp, and paper; shellfish processing; and agricultural wastes such as feedlot and irrigation runoff
- other areas of the environment air, sediments, soils, sludges, oils, leachates, vegetation, etc.

This manual is intended for use by the supervisor or analyst who may be a professional microbiologist, a technician, chemist, engineer, or plant operator. Regardless of other skills, the supervisor and analyst should have received at least two weeks training in each parameter from a federal or state agency or from a university. To assist the new analyst, Part II has been prepared as a basic discussion on laboratory operations and for general guidance to permit use of the manual by those required to do microbiological analyses. The trained analyst will be familiar and knowledgeable of most of these techniques. The analytical procedures in Part III are written in a stepwise manner so that the manual can be used both at bench level and as a reference book. Part IV emphasizes the important, but often neglected need for quality control in microbiological analyses, while Part V describes general considerations for laboratory management.

[extracted from document]

Contact: (513) 569-7562

1 INTRODUCTION

Introduction

2 GENERAL OPERATIONS

Sample Collection, Preservation and Storage Laboratory Equipment, Techniques and Media Isolation and Enumeration of Bacteria Selection of Analytical Methods

3 ANALYTICAL METHODOLOGY

Standard Plate Count Total Coliforms

Fecal Coliforms

Fecal Streptococci

Salmonella

Actinomycetes

4 QUALITY CONTROL

Laboratory Operations
Statistics for Microbiology
Analytical Quality Control Procedures

5 LABORATORY MANAGEMENT

Development of a Quality Control Program Manpower and Analytical Costs Safety Legal Considerations

APPENDIX A: MICROBIOLOGICAL ACTIVITIES UNDER THE WATER LAWS

APPENDIX B: CERTIFICATION OF WATER SUPPLY LABORATORIES

APPENDIX C: BIBLIOGRAPHY

INDEX

			Ref	erence No.: 042
EPA, Of	78. <i>Phytoplankton Samplin</i> fice of Research and Develt, OR. EPA 600/3-78-025.	lopment, Corvallis	Environmental Researc	
Media in which	ch methods can be used:	Water	Sediment	✓ Biota
Keywords:	Biological characteriza analysis	tion, sampling, po	pulation/community, chl	orophyll, data

Abstract

Baseline and monitoring surveys of estuarine, coastal, and ocean waters have been widely employed as a means of obtaining biological and ancillary data needed in the assessing environmental impacts of various human activities. In view of their critical role in the food web and productivity of marine waters and of their rapid response to environmental perturbations, phytoplankton should be included in any survey designed to measure environmental impact.

An overview of phytoplankton sampling and analysis methods as they apply to quantitative baseline and monitoring surveys is provided. A need for inclusion of a preliminary field survey of the area under investigation and of flexibility in sampling design is stressed. An extensive bibliography pertinent to phytoplankton sampling and analysis is included in the report.

The report is intended primarily for the agency personnel requesting proposals and for the survey designer, rather than for the practicing phytoplanktologists.

[extracted from document]

Contact: (503) 867-5000

- 1 CONCLUSIONS
- 2 INTRODUCTION
- 3 PHYTOPLANKTON ECOLOGY
- 4 SAMPLING DESIGN FOR ENVIRONMENTAL ASSESSMENT
 Oceanic Sampling
 Estuarine Sampling
- 5 PHYTOPLANKTON VERTICAL HETEROGENEITY

Surface Microlayer Sampling Subsurface Sampling Aphotic Zone Sampling

6 SAMPLE TREATMENT
Sample Volume
Live Sample Analysis
Sample Fixation

7 SAMPLE CONCENTRATION

Settling Centrifugation Filtration

8 PHYTOPLANKTON ENUMERATION

Utermohl Method Conventional Counting Methods Particle Counters Fluorescence Microscopy

- 9 PRIMARY PRODUCTIVITY
- 10 PHYTOPIGMENT FLUORESCENCE
- 11 SOLAR RADIATION
- 12 ANCILLARY HYDROGRAPHY
- 13 STATISTICAL CONSIDERATIONS

14 REFERENCES

Literature Cited

Selected Ecological Bibliography

Phytoplankton Survey and Distribution Bibliography

Phytoplankton Methodology Bibliography

Phytoplankton Identification Bibliography

Selected Statistical Bibliography

U.S. EPA. 1979. Handbook for Analytical Quality Control in Water and Wastewater Laboratories. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH. EPA-600/4-79-019. (NTIS: PB79-297451).

Media in which methods can be used:

✓ Water

Sediment

✓ Biota

Keywords:

Water quality, QA/QC, pH, salinity, turbidity, sampling, organics, radioactivity,

pathogenic organisms, toxicity/bioassay

Abstract

This handbook is addressed to laboratory directors, leaders of field investigations, and other personnel who bear responsibility for water and wastewater data. Subject matter of the handbook is concerned primarily with quality control (QC) for chemical and biological tests and measurements. Chapters are also included on QC aspects of sampling, microbiology, biology, radiochemistry, and safety as they relate to water and wastewater pollution control. Sufficient information is offered to allow the reader to inaugurate or reinforce programs of analytical QC that emphasize early recognition, prevention, and correction of factors leading to breakdowns in the validity of water and wastewater pollution control data. [copied from document]

Contact: (513) 569-7586

1 IMPORTANCE OF QUALITY CONTROL

General

Quality Assurance Programs

Analytical Methods

Reference

2 LABORATORY SERVICES

General

Distilled Water

Compressed Air

Vacuum

Hood System

Electrical Services

References

3 INSTRUMENT SELECTION

Introduction

Analytical Balances

pH/Selective-Ion Meters

Conductivity Meters

Turbidimeters (Nephelometers)

Spectrometers

Organic Carbon Analyzers

Gas Chromatographs

References

4 GLASSWARE

General

Types of Glassware

Volumetric Analyses

Federal Specifications for Volumetric Glassware

Cleaning of Glass and Porcelain

Special Cleaning Requirements

Disposable Glassware

Specialized Glassware

Fritted Ware

References

5 REAGENTS, SOLVENTS, AND GASES

Introduction

Reagent Quality

Elimination of Determinate Errors References

6 QUALITY CONTROL FOR ANALYTICAL PERFORMANCE

Introduction

The Industrial Approach to QC

Applying Control Charts in Environmental Laboratories

Recommended Laboratory Quality Assurance Program

Outline of a Comprehensive Quality Assurance Program

Related Topics

References

7 DATA HANDLING AND REPORTING

Introduction

The Analytical Value

Glossary of Statistical Terms

Report Forms

References

8 SPECIAL REQUIREMENTS FOR TRACE ORGANIC ANALYSIS

Introduction

Sampling and Sample Handling

Extract Handling

Supplies and Reagents

Quality Assurance

References

9 SKILLS AND TRAINING

General

Skills

Training

10 WATER AND WASTEWATER SAMPLING

Introduction

Areas of Sampling

References

11 RADIOCHEMISTRY

Introduction

Sample Collection

Laboratory Practices

Quality Control

References

12 MICROBIOLOGY

Background

Specific Needs in Microbiology

Intralaboratory Quality Control

Interlaboratory Quality Control

Development of a Formal Quality Assurance Program

Documentation of a Quality Assurance Program

Chain-of-Custody Procedures for Microbiological Samples

References

13 AQUATIC BIOLOGY

Summary of General Guidelines

Discussion

Reference

14 LABORATORY SAFETY

Law and Authority for Safety and Health

EPA Policy on Laboratory Safety

Laboratory Safety Practices

Report of Unsafe or Unhealthful Condition

References

APPENDIX A: SUGGESTED CHECKLIST FOR SAFETY EVALUATION OF EPA LABORATORY

AREAS

U.S. EPA. 1983. Methods for Chemical Analysis of Water and Wastes. 3rd. ed. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA 600/4-79-020. (NTIS: PB84-128677). ✓ Water Media in which methods can be used: Sediment **Biota Keywords:** Water quality, pH, turbidity, temperature, total solids, nutrients, metals, organics, inorganics, total organic carbon, dissolved oxygen, oxygen demand

Abstract

This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

This third edition of "Methods for Chemical Analysis of Water and Wastes" contains the chemical analytical procedures used in U.S. Environmental Protection Agency (EPA) laboratories for the examination of ground and surface waters, domestic and industrial waste effluents, and treatment process samples. Except where noted under "Scope and Application", the methods are applicable to both water and wastewaters, both fresh and saline water samples. The manual provides test procedures for the measurement of physical, inorganic, and selected organic constituents and parameters. The methods were chosen through the combined efforts of the EPA Regional Quality Assurance Coordinators, the staff of the Physical and Chemical Methods Branch, Environmental Monitoring and Support Laboratory, and other senior chemists in both federal and state laboratories. Method selection was based on the following criteria:

- the method should measure the desired property or constituent with precision, accuracy, and specificity sufficient to meet the needs of EPA, in the presence of the interfering materials encountered in water and waste samples
- the procedure should utilize the equipment and skills available in modern laboratories
- the selected method is in use in many laboratories or has been sufficiently tested to establish its validity
- the method should be rapid enough to permit routine use for the examination of a large number of samples

This manual is a basic reference for monitoring water and wastes in compliance with the requirements of the Federal Water Pollution Control Act Amendments of 1972. Although other test procedures may be used, as provided in the Federal Register issue of October 16, 1973 (38FR 28758) and in subsequent amendments, the methods described in this manual will be used by the Environmental Protection Agency in determining compliance with applicable water and effluent standard established by the Agency. [extracted from document]

Contact: (513) 569-7586

		<u>METHOD</u>
100	PHYSICAL PROPERTIES	
	Color	
	Colorimetric, ADMI	110.1
	Colorimetric, Platinum-Cobalt	110.2
	Spectrophotometric	110.3
	Conductance	
	Specific Conductance	120.1
	Hardness, Total (mg/l as CaCO ₃)	
	Colorimetric, Automated EDTA	130.1
	Titrimetric, ETDA	130.2
	Odor	
	Threshold Odor (Consistent Series)	140.1
	pН	
	Electrometric	150.1
	Electrometric (Continuous Monitoring)	150.2
	Residue	'
	Filterable	
	Gravimetric, Dries at 180°C	160.1
	Non-Filterable	
	Gravimetric, Dries at 103-105°C	160.2
	Total	
	Gravimetric, Dries at 103-105°C	160.3
	Volatile	
	Gravimetric, Ignition at 550°C	160.4
	Settleable Matter	
	Volumetric, Imhoff Cone	160.5
	Temperature	
	Thermometric	170.1
	Temperature	
	Nephelometric	170.1
200	METALS	
	Atomic Absorption Methods	
	Inductively Coupled Plasma	200.7
	Aluminum	
	AA, Direct Aspiration	202.1
	AA, Furnace	202.2
	Antimony	
	AA, Direct Aspiration	204.1
	AA, Furnace	204.2

	044
Arsenic	
AA, Furnace	206.2
AA, Hydride	206.3
Spectrophotometric, SDDC	206.4
Digestion Method for Hydride and SDDC	206.5
Barium	200.0
AA, Direct Aspiration	208.1
AA, Furnace	208.2
Beryllium	200.2
AA, Direct Aspiration	210.1
AA, Furnace	210.2
Boron	210.2
Colorimetric, Curcumin	212.3
Cadmium	212.0
AA, Direct Aspiration	213.1
AA, Furnace	213.2
Calcium	210.2
AA, Direct Aspiration	215.1
Titrimetric, EDTA	215.2
Chromium	210.2
·	218.1
AA, Direct Aspiration	218.2
AA, Furnace Chelation-Extraction	218.3
Hexavalent, Chelation-Extraction	218.4
Hexavalent, Dissolved	218.5
Cobalt	210.5
AA, Direct Aspiration	219.1
AA, Furnace	219.2
Copper	213.2
AA, Direct Aspiration	220.1
AA, Furnace	220.1
Gold	220.2
AA, Direct Aspiration	231.1
AA, Furnace	231.2
Iridium	201.2
AA, Direct Aspiration	235.1
AA, Furnace	235.2
Iron	200.2
AA, Direct Aspiration	236.1
AA, Furnace	236.2
Lead	200.2
AA, Direct Aspiration	239.1

239.2

AA, Furnace

Magnesium	
AA, Direct Aspiration	242.1
Manganese	
AA, Direct Aspiration	243.1
AA, Furnace	243.2
Mercury	
Cold Vapor, Manual	245.1
Cold Vapor, Automated	245.2
Cold Vapor, Sediments	245.5
Molybdenum	
AA, Direct Aspiration	246.1
AA, Furnace	246.2
Nickel	
AA, Direct Aspiration	249.1
AA, Furnace	249.2
Osmium	
AA, Direct Aspiration	252.1
AA, Furnace	252.2
Palladium	
AA, Direct Aspiration	253.1
AA, Furnace	253.2
Platinum	
AA, Direct Aspiration	255.1
AA, Furnace	255.2
Potassium	
AA, Direct Aspiration	258.1
Rhenium	
AA, Direct Aspiration	264.1
AA, Furnace	264.2
Rhodium	
AA, Direct Aspiration	265.1
AA, Furnace	265.2
Ruthenium	
AA, Direct Aspiration	267.1
AA, Furnace	267.2
Selenium	
AA, Furnace	270.2
AA, Hydride	270.3
Silver	
AA, Direct Aspiration	272.1
AA, Furnace	272.2
Sodium	
AA, Direct Aspiration	273.1

		v
	AA, Furnace	273.2
	Thallium	
	AA, Direct Aspiration	279.1
	AA, Furnace	279.2
	Tin	
	AA, Direct Aspiration	282.1
	AA, Furnace	282.2
	Titanium	
	AA, Direct Aspiration	283.1
	AA, Furnace	283.2
	Vanadium	
	AA, Direct Aspiration	286.1
	AA, Furnace	286.2
	Zinc	
	AA, Direct Aspiration	289.1
	AA, Furnace	289.2
300	INORGANICS - NON-METALS	
	Determination of Inorganic Anions in Water	
	by Ion Chromatography	300.0
	Acidity	
	Titrimetric	305.1
	Titrimetric (Acid Rain)	305.1
	Alkalinity	
	Titrimetric (pH 4.5)	310.1
	Colorimetric, Automated Methyl Orange	310.2
	Bromide Titrimetric	000.4
	Chloride	320.1
	Colorimetric, Automated Ferricyanide, AA I	005.4
	Colorimetric, Automated Ferricyanide, AA II	325.1
	Titrimetric, Mercuric Nitrate	325.2 325.1
	Chlorine, Total Residual	323.1
	Titrimetric, Amperometric	330.1
	Titrimetric, Back-Iodometric	330.2
	Titrimetric, Iodometric	330.3
	Titrimetric, DPD-FAS	330.4
	Spectrophotometric, DPD	330.5
	Cyanide	550.5
	Amenable to Chlorination	
	Titrimetric, Spectrophotometric	335.1
	Total	555.1
	Titrimetric, Spectrophotometric	335.2

Colorimetric, Automated UV	335.3
Fluoride	
Colorimetric, SPADNS with Bellack Distillation	340.1
Potentiometric, Ion Selective Electrode	340.2
Colorimetric, Automated Complexone	340.3
lodide	
Titrimetric	345.1
Nitrogen	
Ammonia	
Colorimetric, Automated Phenate	350.1
Colorimetric, Titrimetric; Potentiometric - Distillation Procedure	350.2
Potentiometric, Ion Selective Electrode	350.3
Kjeldahl, Total	
Colorimetric, Automated Phenate	351.1
Colorimetric, Semi-Automated Block Digester AAII	351.2
Colorimetric: Titrimetric; Potentiometric	351.3
Potentiometric, Ion Selective Electrode	351.4
Nitrate	
Colorimetric, Brucine	352.1
Nitrate-Nitrite	
Colorimetric, Automated Hydrazine Reduction	353.1
Colorimetric, Automated Cadmium Reduction	353.2
Potentiometric, Manual Cadmium Reduction	353.3
Nitrite	
Spectrophotometric	354.1
Oxygen, Dissolved	
Membrane Electrode	360.1
Modified Winkler (Full Bottle Technique)	360.2
Phosphorus	
All Forms	
Colorimetric, Automated, Ascorbic Acid	365.1
Colorimetric, Ascorbic Acid. Single Reagent	365.2
Potentiometric, Ascorbic Acid, Two Reagent	365.3
Total	
Colorimetric, Automated, Block Digester, AAII	365.4
Silica, Dissolved	
Colorimetric	370.1
Sulfate	
Colorimetric, Automated Chloranilate	375.1
Colorimetric, Automated Methyl Thymol Blue AAII	375.2
Gravimetric	375.3
Turbidimetric	375.4

		044
	Sulfide	•
	Titrimetric, Iodine	376.1
	Colorimetric, Methylene Blue	376.2
	Sulfite	
	Titrimetric	377.1
400	ORGANICS	
	Biochemical Oxygen Demand	
	BOD (5 day, 20°C)	405.1
	Chemical Oxygen Demand	
	Titrimetric, Mid-Level	410.1
	Titrimetric, Low-Level	410.2
	Titrimetric, High-Level	410.3
	Colorimetric, Automated; Manual	410.4
	Oil and Grease, Total Recoverable	
	Gravimetric, Separatory Funnel Extraction	413.1
	Spectrophotometric, Infrared	413.2
	Organic Carbon, Total	
	Combustion or Oxidation	415.1
	UV Promoted, Persulfate Oxidation	415.2
	Petroleum Hydrocarbons, Total, Recoverable	
	Spectrophotometric, Infrared	418.1
	Phenolics, Total Recoverable	
	Spectrophotometric, Manual 4-AAP with Distillation	420.1
	Colorimetric, Automated 4-AAP with Distillation	420.2
	Spectrophotometric, MBTH with Distillation	420.3
	Methylene Blue Active Substances (MBAS)	
	Colorimetric	425.1
	NTA	
	Colorimetric, Manual, Zinc-Zincon	430.1
	Colorimetric, Automated Zinc-Zincon	430.2

U.S. EPA. 1985. Bioaccumulation Monitoring Guidance: 3. Recommended Analytical Detection Limits. U.S. Environmental Protection Agency, Office of Water, Washington, DC. pp. 23. EPA 503/6-90-001.

Media in which methods can be used:

✓ Water

✓ Sediment

✔ Biota

Keywords:

Water quality, sediment quality, metals, organics, bioaccumulation, tissue analysis,

data analysis

Abstract

The accumulation of toxic substances in marine organisms that may lead to adverse biological effect or affect commercial or recreational fisheries is one of the major concerns in the 301(h) program related to evaluating the effects of sewage discharges into marine and estuarine waters. Evaluation of differences between body burdens in organisms from relatively uncontaminated reference areas and those from contaminated estuarine and marine environments potentially impacted by the discharge is an important part of bioaccumulation studies. Such comparisons will generally require data that are reliable at low part per billion concentrations. Therefore, low but practically attainable detection limits are a minimum requirement to ensure the usefulness of bioaccumulation monitoring data.

This report reviews the factors that influence target pollutant detection limits and recommends minimum detection limits for bioaccumulation studies. Although this report is not designed to address specific analytical protocols, it serves as a companion document to the recommended analytical protocols in the Bioaccumulation Monitoring Guidance series.

This report is one element of the Bioaccumulation Monitoring Guidance Series. The purpose of this series is to provide Guidance for monitoring of priority pollutant residues in tissues of resident marine organisms. These guidance documents were prepared for the 301(h) sewage discharge permit program under the U.S. EPA Office of Marine and Estuarine Protection, Marine Operations Division. Two kinds of monitoring guidance are provided in this series: recommendations for sampling and analysis designs and aids for interpretation of monitoring data.

Although these guidance documents were prepared specifically for monitoring of sewage discharges under the 301(h) program, their potential use extends to assessment and monitoring of bioaccumulation resulting from other kinds of pollutant discharges into marine and estuarine environments. [extracted from document]

Contact: (202) 260-8448

- 1 RECOMMENDED ANALYTICAL DETECTION LIMITS
 Trace Metals
 Organic Compounds
- 2 SUMMARY OF RECOMMENDATIONS FOR DETECTION LIMITS
- 3 REFERENCES

U.S. EPA. 1985. Summary of U.S. EPA-Approved Methods, Standard Methods, and Other Guidance for 301(h) Monitoring Variables. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC 20460. pp. 16. EPA 503/4-90-002.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, pH, temperature, turbidity, total solids, dissolved oxygen, grain size, nutrients, metals, organics, inorganics, bioaccumulation, chlorophyll, pathogenic organisms, oxygen demand, PAHs, PCBs, population/community

Abstract

Monitoring programs for 301(h) dischargers should provide data with which to evaluate the impact of the modified discharge on marine biota, demonstrate compliance with applicable water quality standards, and measure toxic substances in the discharge. Thirty-two biological, sediment, and water quality variables may be included in 301(h) monitoring programs to provide such data. The biological and sediment variables are applicable to samples collected from the receiving environment. The water quality variables are applicable to samples collected from both effluent and receiving water.

Collection of high quality data that are comparable among dischargers requires that analytical methods for each monitoring variable follow established protocols. Available methods for each of the 32 variables are discussed. Methods are divided into three categories: U.S. EPA methods, standard methods, and additional methods available in the scientific literature. U.S. EPA methods are divided further into those that have been approved by the agency, those that have been suggested but not approved, and those for which there is an agency guidance document. Standard methods refer exclusively to American Public Health Association Standard Methods (i.e., APHA 1985). Additional methods are found in a variety of documents.

[extracted from document]

Contact: (202) 260-8448

THIS 16 PAGE DOCUMENT DOES NOT CONTAIN A TABLE OF CONTENTS

U.S. EPA. 1985. Test Methods for Escherichia coli and Enterococci in Water by the Membrane Filter Procedure. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH. pp. 30. EPA 600/4-85/076. (NTIS: PB86-158052). Water Media in which methods can be used: Sediment Biota **Keywords:** Water quality, pathogenic organisms

Abstract

The methods described in this report can be used to measure the bacteriological densities of E. coli and enterococci in ambient waters. A direct relationship between the density of enterococci and E. coli in water and the occurrence of swimming-associated gastronenteritis has been establish through epidemiological studies of marine and freshwater bathing beaches. These studies have led to the development of criteria which can be used to establish recreational water standards based on recognized health effectswater quality relationships. [extracted from document]

Contact: (513) 569-7562

1 ESCHERICHIA COLI IN WATER BY THE MEMBRANE FILTER PROCEDURE

Citation

Scope and Application

Summary

Definition

Interferences

Safety Procedures

Apparatus and Equipment

Reagents and Materials

Sample Collection, Preservation, and Holding Times

Calibration and Standardization

Quality Control

Procedures

Calculation of Results

Reporting Results

Verification Procedure

Precision and Bias

2 ENTEROCOCCI IN WATER BY THE MEMBRANE FILTER PROCEDURE

Citation

Scope and Application

Summary

Definition

Interferences

Safety Precautions

Apparatus and Equipment

Reagents and Materials

Sample Collection, Preservation, and Holding Times

Calibration and Standardization

Quality Control

Procedure

Calculation of Results

Reporting Results

Verification Procedure

Precision and Bias

U.S. EPA. 1986. Analytical Methods for U.S. EPA Priority Pollutants and 301(h) Pesticides in Estuarine and Marine Sediments. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. EPA 503/6-90-004
Media in which methods can be used: Water Sediment Biota
Keywords: Sediment quality, inorganics, organics, pesticides, PCBs, PAHs, metals, sampling, QA/QC, data analysis

Abstract

The three analytical methods in this document have been designed to be consistent with probable uses of 301(h) monitoring data. Comparison of sediment contaminant concentrations from contaminated and relatively uncontaminated areas often require sensitive analytical techniques for a wide range of chemically diverse pollutants. The recommended 301(h) procedures allow for a sensitive analyses of the target compounds with a reasonable amount of laboratory effort.

The first method is designed to determine the concentrations of semivolatile priority pollutants listed under Section 301(h) of the Clean Water Act. The procedures can achieve detection limits in the low parts per billion range and are appropriate to detect and monitor differences between sediments from relatively uncontaminated reference areas and those from contaminated estuarine and marine environments.

The second method outlines the analyses of 301(h) volatile organic priority pollutants. Detection limits of these analytical procedures are dependent upon the extent of interference from other target and nontarget analytes present in the sample matrix, and the approximate range is from 5 - 10 parts per billion.

The third method is an analytical procedure for the determination of 301(h) priority pollutant metal and metallic concentrations in sediments and dredged material. These elements include antimony, arsenic, beryllium, cadmium, chromium, copper, led, mercury, nickel, selenium, silver, thallium, and zinc. The method involves wet oxidation (and digestion) process. The detection limits vary depending upon the target analyte, the method of detection, and instrument sensitivity. Typical detection limits for each metal and method are listed.

These 301(h) methods have been assembled according to guidelines for EMSL (Environmental Monitoring and Support Laboratory, Cincinnati) analytical methods (as specified in EPA-600/8-83-020). [extracted from document]

Contact: (202) 260-8448

1 ANALYSIS OF EXTRACTABLE ORGANIC COMPOUNDS IN ESTUARINE AND MARINE SEDIMENTS

Scope and Application

Summary of Method

Interferences

Safety

Apparatus and Equipment

Reagents and Consumable Materials

Sample Collection, Preparation and Storage

Calibration and Standardization

Quality Assurance/Quality Control

Procedure

Quantitative Determination (Calculations)

Precision and Accuracy

References

2 ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN ESTUARINE AND MARINE SEDIMENTS

Scope and Application

Summary of Method

Interferences

Safety

Apparatus and Equipment

Reagents and Consumable Materials

Sample Collection, Preparation, and Storage

Calibration and Standardization

Quality Control

Procedure

Quantitative Determination (Calculations)

Precision and Accuracy

References

3 ANALYSIS OF METALS AND METALLOIDS IN ESTUARINE AND MARINE SEDIMENTS

Scope and Application

Summary of Method

Definitions

Interferences

Safety

Apparatus and Equipment

Reagents and Consumable Materials

Sample Collection, Preparation, and Storage
Calibration and Standardization
Quality Control
Procedure
Calculations
Precision and Accuracy

U.S. EPA. 1986. Bioaccumulation Monitoring Guidance: 4. Analytical Methods for U.S. EPA Priority Pollutants and 301(h) Pesticides in Tissues From Estuarine and Marine Organisms. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. EPA 503/6-90-002.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, organics, inorganics, pesticides, PCBs, PAHs, metals, bioaccumulation, tissue analysis, sampling, QA/QC, data analysis

Abstract

This report is one element of the Bioaccumulation Monitoring Guidance Series. The purpose of this series is to provide guidance for monitoring of priority pollutant residues in tissues of estuarine and marine organisms. These guidance documents were prepared for the sewage discharge program of Section 301(h) of the Clean Water Act under the U.S. EPA Office of Marine and Estuarine Protection, Marine Operations Division. Two kinds of monitoring guidance are provided in this series; recommendations for sampling and analysis designs, and aids for interpretation of monitoring data.

The three analytical methods in this document have been designed to be consistent with probable uses of 301(h) bioaccumulation monitoring data. Comparison of tissue contaminant concentrations from contaminated and relatively uncontaminated areas and estimation of the potential health effects of bioaccumulated substances often require sensitive analytical techniques for a wide range of chemically diverse pollutants. The recommended 301(h) procedures allow for a sensitive analyses of the target with a reasonable amount of laboratory effort.

These procedures are applicable when low part per billion detection limits are required to monitor differences between body burdens in organism from relatively uncontaminated reference sites and from impacted estuarine and marine environments. The procedures are also applicable when low detection limits are required for the estimation of potential health effects of bioaccumulated substances. However, detection limits for all analytes of interest, especially volatile organics, cannot be predetermined because of the probability of interference in the sample matrices, varying instrumental sensitivity, or differing methods of detection.

It should be recognized that the design of a monitoring program reflects the site-specific characteristics of the pollutant discharge and the receiving environment. Thus, site-specific considerations may lead to a modification of the generic recommendations herein. Finally, although these guidance documents were prepared specifically for monitoring of sewage discharges under the 301(h) program, their potential use extends to assessment and monitoring of bioaccumulation resulting from other kinds of pollutant discharges into marine and estuarine environments.

These methods have been assembled according to guidelines for EMSL (Environmental Monitoring and Support Laboratory, Cincinnati) analytical methods (as specified in EPA-600/8-83-020). [extracted from document]

Contact: (202) 260-8448

1 ANALYSIS OF EXTRACTABLE ORGANIC COMPOUNDS IN ESTUARINE AND MARINE TISSUES

Scope and Application

Summary of Method

Interferences

Safety

Apparatus and Equipment

Reagents and Consumable Materials

Sample Collection, Preparation, and Storage

Calibration and Standardization

Quality Assurance/Quality Control

Procedure

Quantitative Determination (Calculations)

Precision and Accuracy

References

2 ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN ESTUARINE AND MARINE TISSUES

Scope and Application

Summary of Method

Interferences

Safety

Apparatus and Equipment

Reagents and Consumable Materials

Sample Collection, Preparation, and Storage

Calibration and Standardization

Quality Control

Procedure

Quantitative Determination (Calculations)

Precision and Accuracy

References

3 ANALYSIS OF METALS AND METALLOIDS IN ESTUARINE AND MARINE TISSUES

Scope and Application

Summary of Method

Interferences

Safety

Apparatus and Equipment

Reagents and Consumable Materials

Sample Collection, Preparation, and Storage

Calibration and Standardization
Quality Control
Procedure
Calculations
Precision and Accuracy

References

		•	
	,		•
		ı	
		•	
		T.	
		."	
•			
		40	

U.S. EPA. 1986. Ouality Criteria for Water 1986. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA 440/5-86-001. (NTIS: PB87-226759).

Media in which methods can be used:

✓ Water

Sediment

Biota

Keywords:

Water quality, dissolved oxygen, pH, salinity, temperature, total solids, turbidity,

organics, inorganics, metals, PAHs, PCBs, nutrients, pesticides

Abstract

Section 304 (a) (1) of the Clean Water Act (33 U.S.C. 1314 (a) (1)) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish, shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation which may be expected from the presence of pollutants in any body of water including groundwater; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information of the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters.

These criteria are not rules and they do not have regulatory impact. Rather, these criteria present scientific data and guidance of the environmental effects of pollutants which can be useful to derive regulatory requirements based on considerations of water quality impacts. When additional data has become available, these summaries have been updated to reflect the latest Agency recommendations on acceptable limits for aquatic life and human health protection.

In a continuing effort to provide those who use EPA's water quality and human health criteria with up-todate criteria values and associated, this document Quality Criteria for Water 1986 was assembled. This document includes summaries of all the contaminants for which EPA has developed criteria recommendations (Appendix A-C). The appropriate Appendix is identified at the end of each summary. A more detailed description of these procedures can be found in the appropriate Appendix. [compiled after review]

INTRODUCTION

SUMMARY CHART

Acenaphthene

Acrolein

Acrylonitrile

Aesthetics

Alkalinity

Aldrin/Dieldrin

Ammonia

Antimony

Arsenic

Asbestos

Bacteria

Barium

Benzene

Boron

Cadmium

Carbon Tetrachloride

Chlordane

Chlorinated Benzenes

Chlorinated Ethanes

Chlorinated Naphthalenes

Chlorine

Chlorinated Phenols

Chloroalkyl Ethers

Chloroform

Chlorophenoxy Herbicides

Chlorpyrifos

Chromium

2-Chlorophenol

Color

Copper

Cyanide

DDT and Metabolites

Demeton

Dichlorobenzenes

Dichlorobenzidine

Dichloroethylenes

2,4 - Dichlorophenol

Dichloropropanes/Dichloropropenes

2,4 - Dimethylphenol

Dinitrotoluene

Diphenylhydrazine

Endosulfan

Endrin

Ethylbenzene

Fluoranthene

Gasses, Total Dissolved

Guthion

Haloethers

Halomethanes

Hardness

Heptachlor

Hexachlorobutadiene

Hexachiorocyclohexane

Hesachlorocyclopentadiene

Iron

Isophorone

Lead

Malathion

Manganese

Mercury

Methoxychlor

Mirex

Naphthalene

Nickel

Nitrates, Nitrites

Nitrobenz:ene

Nitrophenols Nitrosamines

Oil and Grease

Oxygen, Dissolved

_ ...

Parathion

Phentachlorophenol

 $\mathsf{p}\mathsf{H}$

Phenol

Phosphorus

Phthalate Esters

Polychlorinated Biphenyls

Polynuclear Aromatic Hydrocarbons

Selenium

Silver

Solids (Dissolved) & Salinity

Solids (Suspended) & Turbidity

Sulfides, Hydrogen Sulfide

Tainting Substances

Temperature

2,3,7,8 - Tetrachlorodibenzo-p-dioxin

Tetrachloroethylene

Thallium

Toluene

Toxaphene

Trichloroethylene

Vinyl Chloride

Zinc

APPENDIX A: METHODOLOGY FOR DEVELOPING CRITERIA

APPENDIX B: METHODOLOGY FOR DEVELOPING CRITERIA

APPENDIX C: METHODOLOGY FOR DEVELOPING CRITERIA

BIBLIOGRAPHY

U.S. EPA. 1987. Bioaccumulation Monitoring Guidance: Selection of Target Species and Review of Available Data Volume 1 and Volume 2 (Appendices). U.S. Environmental Protection Agency, Office of Water, Washington, DC. pp. 52. Vol. 1: EPA/430-86-005. (NTIS: PB87-221065). Vol. 2: EPA/430/9-86-006. (NTIS: PB87-221073).

Media in which methods can be used:

Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, bioaccumulation,

sampling

Abstract

The primary purpose of this report is to provide guidance for selecting target species for bioaccumulation monitoring studies to be conducted as part of the 301(h) sewage discharge program. Consistency among the monitoring programs for individual 301(h) discharges ultimately will allow the development of regional and national perspectives on the effects of sewage discharges on marine and estuarine environments.

Monitoring the accumulation of toxic substances in tissues of marine organisms is useful for assessing environmental impacts of specific sources of pollution or evaluating water quality from a regional perspective. The choice of target species is a key element of any bioaccumulation monitoring program. Tissue concentrations of toxic substances in target species can serve as indicators of contamination throughout the biological system. At a minimum, the target species must be capable of accumulating toxic substances representative of the study area(s), abundant enough over time and space to allow adequate sampling, and large enough to provide adequate amount of tissue for analysis.

In addition to recommending target species for bioaccumulation monitoring, this report presents a compilation, evaluation, and summary of recent data on concentrations of priority pollutants in those species. For example, the data for a target species at a particular discharge site can be compared with historical data for that same species during different time periods and at various locations throughout the United States.

[extracted from document]

- 1 INTRODUCTION
- 2 RECOMMENDED TARGET SPECIES

General Approach

Fishes

Ranking Procedure

Primary Selection Criteria

Secondary Selection Criteria

Recommended Target Fish Species

Large Macroinvertebrates

3 ADDITIONAL SAMPLING CONSIDERATIONS

Tissue Selection

Time of Sampling

4 HISTORICAL DATA FOR TARGET SPECIES

Approach

Data Summaries

Data Gaps

- 5 SUMMARY OF RECOMMENDATIONS
- 6 REFERENCES
- APPENDIX A: SELECTION OF TARGET SPECIES FOR BIOACCUMULATION

MONITORING

APPENDIX B: EVALUATION CRITERIA FOR HISTORICAL DATA REVIEW

APPENDIX C: EVALUATION OF HISTORICAL DATA SETS FOR TARGET SPECIES

APPENDIX D: COMPILATION OF HISTORICAL DATA ON PRIORITY POLLUTANT

CONCENTRATIONS IN TISSUES OF RECOMMENDED TARGET

SPECIES

APPENDIX E: HISTORICAL DATA SETS ON TISSUE CONCENTRATIONS OF PRIORITY

POLLUTANTS IN RECOMMENDED SECONDARY SPECIES

U.S. EPA. 1987. Bioaccumulation Monitoring Guidance: 5. Strategies for Sample Replication and Compositing. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. pp. 51. EPA 430/09-87-003.

Media in which methods can be used:

✓ Water

✓ Sediment

✔ Biota

Keywords:

Water quality, sediment quality, sampling, bioaccumulation, data analysis/

management

Abstract

This report provides guidance on the selection of appropriate replication and compositing strategies for bioaccumulation monitoring studies. A statistical approach is presented for determining the levels of difference in bioaccumulation that can be reliably detected with varying levels of sampling effort. Example analyses are presented to demonstrate the effects of alternative sampling designs. These example analyses are based on historical data from bioaccumulation monitoring programs that used tissues from individual target species recommended in an earlier report in this series (U.S. EPA, 1987). The results of additional analyses employing simulation methods are used to provide a comparison of grab- and composite-sampling strategies.

This report is one element of the Bioaccumulation Monitoring Guidance Series. The purpose of this series is to provide guidance for monitoring of priority pollutant residues in tissues or resident marine organisms. These guidance documents were prepared for the 301(h) sewage discharge permit program under the U.S. EPA Office of Marine and Estuarine Protection, Marine Operations Division. Other documents in the series include:

- Selection of Target Species and Review of Available Bioaccumulation Data, Volumes I and II (U.S. EPA, 1987) EPA/430-86-005, EPA/430-86-006 [Reference 051]
- Analytical Methods for EPA Priority Pollutants (U.S. EPA, 1985) EPA 503/6-90-002 [Reference 049]
- Recommended Analytical Detection Limits (U.S. EPA, 1985) EPA 503/6-90-001 [Reference 045]

The information provided herein will be useful to U.S. EPA monitoring program reviewers, permit writers, permittees, and other organizations involved in performing nearshore monitoring studies. Bioaccumulation monitoring has become increasingly important in assessing pollution effects; therefore this guidance should have broad applicability in the design an interpretation of marine and estuarine monitoring programs.

[extracted from document]

1000

1 INTRODUCTION

2 MONITORING PROGRAM PERFORMANCE

Methods of Analysis
Hypothesis Testing
Power Analyses for Individual Tissue Samples
Analytical Methods
Preliminary Analyses
Analytical Results
Summary

3 COMPOSITE SAMPLING STRATEGIES

Power Analyses for Composite Samples
Analytical Methods
Simulation Analyses
Power Analyses
Summary

- 4 SUMMARY AND RECOMMENDATIONS
- **5 REFERENCES**

Abstract

Keywords:

The purpose of this document is to provide guidance for designing and conducting field surveys of fish liver histopathology as part of 301(h) monitoring programs. Information derived from the surveys of fish liver histopathology can be used in conjunction with other kinds of environmental data to assess potential impacts of sewage and other discharges on marine biota.

Biological characterization, tissue analysis, data analysis, sampling

The document is directed primarily at the non-pathologists involved in writing 301(h)-modified NPDES permits and in overseeing field studies of fish liver histopathology. Although this document is directed at non-pathologists, various sections may also be use for to pathologists.

This document addresses the following four major components of quantitative filed studies of fish liver histopathology:

- · study design
- · field sampling
- · laboratory analysis
- · data analysis and interpretation

Although the emphasis of this document is on liver histopathology, many of the considerations addressed for each component may also pertain to a variety of other kinds of pathological conditions in fishes.

General recommendations for each of the four major study components were made as detailed as possible without sacrificing their site-specific applicability. For example, because specific objectives generally vary among different studies, exact specifications for such considerations as sample sizes, station locations, staining procedures, and methods of data analysis could not be made. Instead, the various acceptable options for each feature are presented along with their respected benefits and limitations. Literature citations were used to support recommendations whenever possible.

Because many of the terms used in this document are unfamiliar to anyone without a background in pathology or cellular biology, a glossary is provided at the end of the document.

The information provided herein will be useful to U.S. EPA monitoring program reviewers, permit writers, permittees, and other organizations involved in performing nearshore monitoring studies. As fish liver histopathology frequently is assessed in other marine and estuarine monitoring programs, the guidance provided herein has broad applicability beyond the 301(h) program. [extracted from document]

1 INTRODUCTION

Background

Purpose and Scope

2 BACKGROUND INFORMATION

Liver of Fishes

Structure

Function

Relation to Chemical Contaminants

Fish Liver Histopathology

General

Cellular Alterations

Neoplasia

Hepatocarcinogenesis Models for Fishes

Review of Historical Data

Laboratory Studies

Field Studies

3 GUIDANCE FOR CONDUCTING FIELD STUDIES

Study Design

Species Selection

Age Limits

Sample Size

Sampling Season

Station Location

Field Sampling Procedures

Fish Acquisition

Holding Time and Conditions

Labeling and Coding

Liver Subsampling

Tissue Fixation

Ancillary Data

Laboratory Procedures

Tissue Processing

Histopathological Evaluations

Quality Assurance/Quality Control

Data Analysis and Interpretation

Age and Sex Effects

Growth and Condition

Comparisons Among Stations

Relationships with Ancillary Variables

4 SUMMARY

Introduction
Background Information
Guidance for Conducting Field Studies
Study Design
Field Collection
Laboratory Procedures
Data Analysis and Interpretation

- 5 REFERENCES
- 6 GLOSSARY

APPENDIX A: SUMMARY OF HEPATIC LESIONS OBSERVED IN FISHES AFTER LABORATORY EXPOSURE TO VARIOUS CHEMICALS

Abstract

This report describes recommended procedures for collecting sediment samples and for measuring the concentration of nonpolar organic contaminants, organic carbon, and sediment dry weight. Sample preparation and preservation techniques are also recommended. Pre-collection activities of detailed sampling plan preparation and QA/QC plan preparation are addressed, as are the selection of appropriate sampling equipment and sample station positioning methods.

The procedures for analysis of semi-volatile organics are adapted from NOAA and EPA methods. Where the recommended extraction, cleanup, and analysis methods differ from established methods, explanation are given as to the advantages of the approach.

[copied from document]

- 1 INTRODUCTION
- 2 DESCRIPTION OF APPROACH FOR ESTABLISHING SEDIMENT QUALITY CRITERIA
- 3 SAMPLE COLLECTION, PRESERVATION, AND ANALYTICAL METHODS

Sample Collection and Preservation

Pre-Collection Planning and Preparation

Sample Collection Procedures

Sample Preservation and Shipping

Analytical Procedures

Dry Weight Determination

Total Organic Carbon Analysis

Analysis of Sediments for Semivolatile Priority Pollutants

Quality Assurance/Quality Control Procedures

Data Reporting

- 4 DATA CALCULATIONS
- 5 CONCLUSION
- 6 REFERENCES
- APPENDIX A: METHOD FOR DETERMINING THE DRY WEIGHT OF A SEDIMENT SAMPLE
- APPENDIX B: METHOD FOR DETERMINING THE TOTAL ORGANIC CARBON CONTENT OF A SEDIMENT SAMPLE
- APPENDIX C: SEDIMENT DEWATERING AND EXTRACTION
- APPENDIX D: METHODS FOR SULFUR CLEANUP OF EXTRACTS

U.S. EPA. 1987. Quality Assurance/Quality Control (QA/QC) for 301(h) Monitoring Programs: Guidance on Field and Laboratory Methods. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. EPA 430/9-86-004. (NTIS: PB87-221164).

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, QA/QC, flow, dissolved oxygen, pH, salinity, total solids, turbidity, grain size, organics, inorganics, nutrients, metals, pesticides, oxygen demand, chlorophyll, population/ community, bioaccumulation, pathogenic organisms

Abstract

This manual was prepared by EPA's Marine Operations Division, Office of Marine and Estuarine Protection in response to requests from EPA Regional Offices and coastal municipalities with sewage treatment plants discharging into estuarine and marine coastal waters. Under regulations implementing Section 301(h) of the Clean Water Act, municipalities are required to conduct monitoring programs to evaluate the impact of their discharge on marine biota, to demonstrate compliance with applicable water quality standards, and to measure toxic substances in the discharge. The collection and analysis of high quality data require that specific, established quality assurance and quality control (QA/QC) protocols be adhered to in each of these major monitoring programs.

QA/QC procedures are included in this document for environmental variables that may be measured in effluent, receiving water, sediment, and organism tissues sampled during 301(h) monitoring programs. Quality assurance and quality control procedures are provided for sample collection, field sample handling, and laboratory processing to implement specific monitoring program requirements provided in the 301(h) modified NPDES permit.

The information provided herein will be useful to U.S. EPA monitoring program reviewers, permit writer, permittees, and other organizations involved in performing nearshore monitoring studies. As the monitoring variables included in this document are commonly used in many marine and estuarine monitoring programs, the guidance provided herein has broad applicability beyond the 301(h) program. [extracted from document]

1 INTRODUCTION

2 EFFLUENT MONITORING

General Methods

Sampling Preparation

Sampling Procedures

Sample Handling

Field Procedures

Sample Shipment

Laboratory Procedures

3 EFFLUENT ANALYSES

Flow

μH

Temperature

Turbidity

Total Suspended Solids

Settleable Solids

Floating Particulates

Dissolved Oxygen (Winkler Method)

Dissolved Oxygen (Probe Method)

Biochemical Oxygen Demand (BOD)

Total Chlorine Residual

Oil and Grease

Nitrogen (Ammonia)

Nitrogen (Total Kjeldahl)

Nitrogen (Nitrate-Nitrite)

Phosphorus (Total)

Priority Pollutant Metals

Priority Pollutant Organic Compounds

Total and Fecal Coliform Bacteria

Enterococcus Bacteria

4 MONITORING THE RECEIVING ENVIRONMENT

General Methods

Sampling Preparation

Sampling Procedures

Station Location

Water Sampling

Grab Sampling

Trawl Sampling

Sampling Handling
Field Procedures
Sample Shipment
Laboratory Procedures
Shipboard Laboratory Analyses

5 RECEIVING WATER ANALYSES

pН

Salinity

Temperature

Color

Transparency

Turbidity

Total Suspended Solids

Settleable Solids

Floating Particulates

Dissolved Oxygen (Winkler Method)

Dissolved Oxygen (Probe Method)

Biochemical Oxygen Demand (BOD)

Oil and Grease

Nitrogen (Ammonia)

Nitrogen (Total Kjeldahl)

Nitrogen (Nitrate-Nitrite)

Phosphorus (Total)

Total and Fecal Coliform Bacteria

Enterococcus Bacteria

Chlorophyll a

Phytoplankton

6 SEDIMENT/INFAUNA ANALYSES

Grain Size

Total Solids/Water Content

Total Volatile Solids (TVS)

Total Organic Carbon (TOC)

Biochemical Oxygen Demand (BOD)

Chemical Oxygen Demand (COD)

Oil and Grease

Sulfides (Total and Water Soluble)

Priority Pollutant Metals

Priority Pollutant Organic Compounds

Infauna

6 BIOACCUMULATION/TRAWL ANALYSES

Priority Pollutant Metals
Priority Pollutant Organic Compounds
Demersal Fishes and Megainvertebrates

REFERENCES

GLOSSARY

APPENDIX A RECOMMENDED METHODS FOR METALS IN EFFLUENT

APPENDIX B RECOMMENDED METHODS FOR ORGANIC COMPOUNDS IN

EFFLUENT

U.S. EPA. 1987. Recommended Biological Indices for 301(h) Monitoring Programs. Prepared for U.S. Environmental Protection Agency, Marine Operations Division, Office of Marine and Estuarine Protection, Washington, DC. pp. 17. EPA 43019-86-002. (NTIS: PB87-221560). Water Sediment ✓ Biota Media in which methods can be used:

Keywords:

Biological characterization, population/community, data analysis/management

Abstract

The 301(h) regulations require dischargers to conduct periodic surveys of those biological communities that are most likely to be affected by the modified discharge. The data from these surveys are used to compare biological conditions in the vicinity of the discharge with biological conditions in reference areas. One approach to making such comparisons involves the use of biological indices that reduce complex data sets into simple numerical relationships. There are numerous diversity, biotic, and similarity indices with which such comparisons may be made.

The purpose of this document is to develop recommendations of those indices that should be used in the interpretation of 301(h) biological monitoring data. The recommended indices are not intended to fully describe biological communities. Rather, they are intended to provide one approach in the overall assessment of compliance with the 301(h) biological criteria. Other indices may be included in individual monitoring programs to better characterize community structure, or to provide data relevant to specific biological conditions of concern. Key issues upon which various indices are often judged include:

- biological meaning
- ease of interpretation
- sensitivity to community changes caused by pollutant impacts

Each of these criteria was considered by Tetra Tech, Inc. and U.S. EPA Office of Research and Development in developing the recommendations contained herein. [extracted from document]

THIS 17 PAGE DOCUMENT DOES NOT CONTAIN A TABLE OF CONTENTS OR SECTION HEADINGS

U.S. EPA. 1988. Guide for Preparation of Quality Assurance Project Plans for the National Estuary Program - Interim Final. U.S. Environmental Protection Agency, Office of Water, Office of Marine and Estuarine Protection, Washington, DC. EPA 556/2-88-001.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, QA/QC,

toxicity/bioassay, bioaccumulation, data analysis

Abstract

The U.S. Environmental Protection Agency (EPA) requires participation by all Regional offices, Program offices, Laboratories, and States in a centrally managed Quality Assurance Program (Administrator's memorandum, May 30, 1979). This EPA policy for quality assurance includes all monitoring and measurement efforts mandated by or supported by EPA and therefore includes all research activities carried out under the National Estuary Program.

QA project plans for the National Estuary Program are written according to a format prescribed by EPA (1984) in OWRS QA-1, "Guidance for the Preparation of Combined Work/Quality Assurance Project Plans for Environmental Monitoring." The format described in OWRS QA-1 is designed to incorporate all information that will be necessary to conduct the research project and to eliminate the need for multiple documents, such as standard work plans and QA project plans.

This document presents guidance for completing the elements of a QA project plan specified by OWRS QA-1. Its format and philosophy are identical to OWRS QA-1, but the guidance and examples are extended to encompass the multifaceted research and monitoring conducted for and required by the National Estuary Program. The guidance presented in this document includes examples from projects similar to those that have been conducted under Comprehensive Estuarine Management – Pollution and Abatement (66.456, 40 CFR 29), commonly known as the "Bays Program."

[extracted from document]

1 BACKGROUND AND INTRODUCTION

2 QA PROJECT PLAN GUIDE

Cover Page

Table of Contents

Project Elements

Project Name

Project Requested By

Date of Request

Date of Project Initiation

Project Officer

Quality Assurance Officer

Project Description

Objective and Scope Statement

Data Usage

Design and Rationale

Monitoring Parameters and Collection Frequency

Parameter Table

Project Fiscal Information

Schedule of Tasks and Products

Project Organization and Responsibility

Data Quality Requirements and Assessments

Precision

Accuracy

Representativeness

Comparability

Completeness

Sampling and Laboratory Procedures

Sample Custody Procedures

Calibration Procedures and Preventive Maintenance

U.S. EPA. 1988. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Edited by C. I. Weber et al. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA-600/4-87/028. (NTIS: PB89-220503).

Media in which methods can be used:

Water

Sediment

Biota

Keywords:

Water quality, toxicity/bioassay, data analysis/management, QA/QC

Abstract

This manual describes six short-term (one-hour to nine-day) methods for estimating the chronic toxicity of effluents and receiving waters to five species:

- sheepshead minnow, Cyprinodon variegatus
- inland silverside, Menidia beryllina
- mysid, Mysidopsis bahia
- sea urchin, Arbacia punctulata
- red macroalga, Champia parvula

This manual is intended to serve as a companion to the freshwater and marine acute toxicity test manual (EPA-600/4-85-013) and the freshwater chronic toxicity test manual (EPA-600/4-85-014) published earlier by the Environmental Monitoring and Support Laboratory - Cincinnati (EMSL-Cincinnati) for use in the National Pollutant Discharge Elimination System (NPDES). These three toxicity test manuals have been prepared to assist the Agency in meeting the goals of the Federal Water Pollution Control Act Amendments of 1977, the Clean Water Act (CWA) of 1977 (PL 95-217), and the Water Quality Act of 1987, which were enacted to restore and maintain the chemical, physical, and biological integrity of the Nation's waters (Section 101[a]), and contained specific or implied requirements for the collection of biomonitoring data in at least 15 sections.

Four of the methods incorporate the chronic end points of growth or reproduction (or both) in addition to lethality. The sheepshead minnow 9-day embryo-larval survival and teratogenicity test incorporates teratogenic effects in addition to lethality. The sea urchin sperm cell test used fertilization as an end point and has the advantage of an extremely short exposure period (1 hour and 20 minutes).

These methods were developed to provide the most favorable cost-benefit relationship possible, and are intended for use in effluent toxicity test performed on-site, where time is very costly, and for toxicity tests with effluent samples shipped off-site to distant laboratories, requiring that the volume of waste shipped be kept to a minimum.

Also included are guidelines on laboratory safety, quality assurance, facilities and equipment, dilution water, effluent sampling and holding, data analysis, report preparation, and organism culturing and handling. Listings of computer programs for Dunnett's Procedures and Probit Analysis are provided in the Appendix.

[copied from document]

Contact: (513) 569-7369

- 1 INTRODUCTION
- 2 SHORT-TERM METHODS FOR ESTIMATING CHRONIC TOXICITY
- 3 HEALTH AND SAFETY
- 4 QUALITY ASSURANCE
- 5 FACILITIES AND EQUIPMENT
- 6 TEST ORGANISMS
- 7 DILUTION WATER
- 8 EFFLUENT AND RECEIVING WATER SAMPLING AND SAMPLE HANDLING
- 9 CHRONIC TOXICITY TEST END POINTS AND DATA ANALYSIS
- 10 REPORT PREPARATION
- 11 SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS) LARVAL SURVIVAL AND GROWTH TEST
- 12 SHEEPSHEAD MINNOW *(CYPRINODON VARIEGATUS)* EMBRYO-LARVAL SURVIVAL AND TERATOGENICITY TEST
- 13 INLAND SILVERSIDE (MENIDIA BERYLLINA) LARVAL SURVIVAL AND GROWTH TEST
- 14 MYSID (MYSIDOPSIS BAHIA) SURVIVAL, GROWTH, AND FECUNDITY TEST
- 15 SEA URCHIN (ARBACIA PUNCTULATA) FERTILIZATION TEST
- 16 ALGAL (CHAMPIA PARVULA) REPRODUCTION TEST

SELECTED REFERENCES

- APPENDIX A: INDEPENDENCE, RANDOMIZATION, AND OUTLIERS
- APPENDIX B: VALIDATING NORMALITY AND HOMOGENEITY OF VARIANCE ASSUMPTIONS

APPENDIX C: DUNNETT'S PROCEDURE

APPENDIX D: BONFERRONI'S T-TEST

APPENDIX E: STEEL'S MANY-ONE RANK TEST

APPENDIX F: WILCOXON RANK SUM TEST

APPENDIX G: PROBIT ANALYSIS

U.S. EPA. 1989. Compendium of Methods for Marine and Estuarine Environmental Studies. U.S. Environmental Protection Agency, Office of Water, Office of Marine and Estuarine Protection, Washington, DC. EPA 503/2-89/001. (NTIS: PB93-202570).

Media in which methods can be used:

✓ Water

Sediment

Biota

Keywords:

Water quality, nutrients, chlorophyll

Abstract

This document represents a prototype for a compendium of methods recommended by the U.S. Environmental Protection Agency (EPA) for use in estuarine and marine environmental studies, and in designing and implementing marine monitoring programs.

The compendium is intended to be part of a cooperative sharing of methods among federal agencies, including EPA's Office of Marine and Estuarine Protection, Regional EPA Offices, EPA research laboratories, the U.S. Army Corps of Engineers, the National Oceanic and Atmospheric Administration, and the National Bureau of Standards.

In order to meet the immediate needs of the agencies, a candidate parameter -- nutrients in seawater -- was selected as the focus for the prototype compendium. This parameter was chosen because nutrients are a major concern in nearly all estuaries, and analysis of nutrients is often a problem due to the lack of validated methods. Therefore, this initial version of the compendium consists of selected methods for the analysis of nutrients; in particular, nitrogen, phosphorus, and chlorophyll.

The compendium of methods, when completed, would be available to investigators in both hardcopy and on-line format.

[extracted from document]

GENERAL INFORMATION

- 1 BACKGROUND
- 2 FORMAT FOR COMPENDIUM OF METHODS Sampling Methods Section Analytical Methods Section
- 3 FORMAT FOR PRESENTATION OF METHODS
- 4 REFERENCES

SAMPLING METHODS (IN PREPARATION)

- 1 WATER SAMPLERS
- 2 SEDIMENT SAMPLERS
- 3 BIOLOGICAL SAMPLERS
- 4 AIR SAMPLERS

ANALYTICAL METHODS

METHOD NO.

1 WATER

Marine and Estuarine Seawater

Physical Characteristics (in preparation)

Water Quality/Biochemical Parameters (in preparation)

Organic Compounds (in preparation)

Inorganic Compounds

Trace Metals (in preparation)

Nutrients

NITROGEN

Colorimetric Automated Phenate Method for

Ammonia Nitrogen

A-NITROGEN-1

Automated Phenate Method for the Determination

of Ammonia Nitrogen

A-NITROGEN-2

Automated Method for the Determination of

Ammonia Nitrogen

A-NITROGEN-3

Manual Method for the Determination of

A-NITROGEN-4

Ammonia Nitrogen

Colorimetric, Semi-Automated, Block Digestor Method for the Determination of	A-NITROGEN-5
Total Kjeldahl Nitrogen	A-NITHOGEN-5
Semi-Automated Method for the Determination of Total Kjeldahl Nitrogen	A-NITROGEN-6
Manual Method for the Determination of Total Kjeldahl Nitrogen	A-NITROGEN-7
Colorimetric, Automated, Cadmium Reduction Method for Nitrate-Nitrite Nitrogen	A-NITROGEN-8
Automated Method for the Determination of Nitrate Plus Nitrite Nitrogen	A-NITROGEN-9
Automated Method for the Determination of Nitrite Nitrogen	A-NITROGEN-10
Manual Method for the Determination of Nitrite Nitrogen	A-NITROGEN-11
Manual Method for the Determination of	
Nitrate Nitrogen	A-NITROGEN-12
Determination of Ammonium Nitrogen	A-NITROGEN-13
Determination of Nitrite Nitrogen	A-NITROGEN-14
Determination of Nitrate Plus Nitrite Nitrogen	A-NITROGEN-15
Determination of Kjeldahl Nitrogen	A-NITROGEN-16
Determination of Ammonia	A-NITROGEN-17
Determination of Ammonia Plus Amino Acids	A-NITROGEN-18
Determination of Reactive Nitrite	A-NITROGEN-20
Determination of Soluble Organic Nitrogen, Kjeldahl Digestion	A-NITROGEN-21
Determination of Soluble Organic Nitrogen by Ultraviolet Oxidation	A-NITROGEN-22
Distillation Method for the Determination of Ammonia Nitrogen	A-NITROGEN-23
Potentiometric Method for the Determination of Ammonia Nitrogen	A-NITROGEN-24
Colorimetric, Automated Phenate Method for the Determination of Total Kjeldahl Nitrogen	A-NITROGEN-25
PHOSPHORUS	// / / / / / / CGZ/ / ES
Colorimetric, Automated, Block Digestor Method for	
the Determination of Total Phosphorus	A-PHOS-1
Colorimetric, Automated, Ascorbic Acid Method	A-PHOS-2
Automated Method for the Determination of Phosphorus	A-PHOS-3
Manual Method for the Determination of Phosphorus	A-PHOS-4
Determination of Orthophosphate	A-PHOS-5
CHLOROPHYLL	
Fluorometric Determination of Chlorophyll <u>a</u>	A-CHLOR-1
Spectrophotometric Determination of Chlorophylls and Total Carotenoids	A-CHLOR-2

Determination of Chlorophyll <u>c</u>
Spectrophotometric Determination of Chlorophyll <u>c</u>
Bacteria, Viruses, and Parasites (in preparation)
Toxicity Tests (in preparation)
Biological Communities (in preparation)
Radioactivity (in preparation)
Floatable Materials (in preparation)

A-CHLOR-3 A-CHLOR-4

Marine and Estuarine Sea-Surface Microlayer (in preparation)
Precipitation (in preparation)
Sediment Interstitial Water (in preparation)

- 2 SEDIMENT (IN PREPARATION)
- 3 TISSUE (IN PREPARATION)
- 4 AIR (IN PREPARATION)
- 5 WASTE (IN PREPARATION)

U.S. EPA. 1989. Guidance Manual: Bedded Sediment Bioaccumulation Tests. U.S. Environmental Protection Agency, Bioaccumulation Team, Pacific Ecosystems Branch, Environmental Research Laboratory, Newport, OR. pp. 232. EPA/600/X-89/302. ERLN-N111. ✓ Sediment **Biota** Water Media in which methods can be used: Sediment quality, bioaccumulation, sampling, grain size, total solids, organic

carbon, data analysis/management

Abstract

Keywords:

Bioaccumulation tests with bedded sediments are the most direct method of deriving tissue residue data required for evaluation of dredge materials and for quantitative ecological and human risk assessments. Bioaccumulation tests are also an important experiment tool for identifying the factors regulating the bioavailability of sediment-associated pollutants and to test various Sediment Quality Criteria approaches. However, the procedures for conducting such tests have not been standardized, making it difficult to compare studies. This manual gives detailed guidance on how to conduct "routine" bedded sediment bioaccumulation tests with marine or estuarine deposit-feeding organisms. All phases of the process are covered, from formation of the experimental design, through the actual exposures to statistical analysis and interpretation of the results.

Because the interpretation of tissue residue data is often relative to "control" and "reference" sites, the acceptability of such sites is considered. The importance of an appropriate experimental design, including sufficient statistical power and replication, is stressed. Methods to avoid or reduce "pseudoreplication", a common statistical problem in toxicity tests, are also discussed. Techniques for conducting long-term exposures (>28 days) and kinetic approaches based on uptake and depuration rates are also presented for cases when more accurate estimates of steady-state tissue residues are required.

Sediment collection and preparation, including spiking techniques, are discussed as are techniques for collecting and maintaining test species in the laboratory. Based on a number of criteria, including a required criterion for sediment-ingestion, five species are recommended as suitable for routine testing. Another eight species are identified as potential "secondary" species. The water quality and sediment requirements for exposure chambers are discussed, and in most cases, these requirements can be achieved with relatively simple static or flow-through systems. Specific sampling schedules and techniques are given for the routine 28-day exposures. To allow comparisons among studies, we recommend the Bligh-Dyer method as the standard lipid technique, or, if another lipid method is used, to intercompare with Bligh-Dyer.

The statistical analysis of the data is discussed, and the use of one-tailed tests is recommended when comparing a test tissue residue(s) to reference or control tissue residue(s), as would commonly be the case when testing for "no further degradation". Besides the "no further degradation" approach, other regulatory strategies for using tissue residue data are presented. [copied from document]

Contact: (503) 867-5000

1 INTRODUCTION

2 CONTROL VERSUS REFERENCE SEDIMENT

Definition of Control and Reference Sediment Criteria for Control and Reference Sediments Standard Reference Sediment

3 PRINCIPALS OF EXPERIMENTAL DESIGN

Objectives and Definitions

Hypotheses Testing

Replication

Randomization

Pseudoreplication

Avoiding or Reducing Pseudoreplication

Compositing Samples

4 TEST DURATION AND SAMPLING SCHEDULES

Standard 28-Day Bioaccumulation Test

Long-Term Uptake Tests

Estimating Steady-State Tissue Residues from Uptake and Depuration Rates

5 SEDIMENT COLLECTION, HOMOGENIZATION, MANIPULATION, AND STORAGE

Sediment Collection and Transport

Sediment Spiking and Manipulation

Laboratory Sediment Storage

Sediment Preparation and Homogenization

6 SEDIMENT CHARACTERIZATION

Grain Size

Total Solids Content

Organic Carbon

Additional Sediment Characteristics

Interstitial Water

U.S. EPA. 1989. Methods Manual for Perdido Bay Citizens Monitoring Program. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Gulf Breeze, FL. pp. 28. EPA/600/4-89/030. (NTIS: PB89-224927).

Media in which methods can be used:

✓ Water

Sediment

Biota

Keywords:

Water quality, volunteer monitoring, sampling

Abstract

Citizen monitoring programs have become an important mechanism to involve citizens in environmental decision-making processes and provide data that are often otherwise unavailable to environmental managers. This Methods Manual and its companion quality assurance/quality control plan were developed in response to a request made by the Friends of Perdido Bay, Inc. (FPB). This document is part of the Gulf Breeze Laboratory's effort to support regional and local technology transfer efforts in addition to direct research activities.

The FPB plan to implement a citizens' volunteer monitoring project includes water quality and weatherbased data. The monitoring and other activities of the FPB form an important component of the Agency's Perdido Bay Cooperative Management Project (PBCMP). The PBCMP is a pilot project of the Agency's Near Coastal Waters Initiative and the pilot project is geographically within the Agency's Gulf of Mexico Program. Thus, data obtained by the citizens volunteer monitoring project will be of interest to the local community and to various levels within the Agency.

This manual contains standard operating procedures (SOPs) for the measurement of dissolved oxygen (DO), Secchi disk, a measure of light penetration, temperature, and salinity. [extracted from document]

Contact: (904) 934-9200

- 1 INTRODUCTION
- 2 PROTOCOL FOR DISSOLVED OXYGEN

Use

Operating Instructions

3 STANDARD OPERATING PROCEDURE LIGHT PENETRATION

Secchi Disk

Temperature

Salinity

La Motte Chemical Titration Kit

VSI Model 33 Salinity, Conductivity and Temperature Meter

APPENDIX A: DISSOLVED OXYGEN

APPENDIX B: SECCHI DISK

APPENDIX C: FIELD DATA SHEETS

U.S. EPA. 1989. QA/QC Plan for Perdido Bay Florida-Alabama Citizens Monitoring Program. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Gulf Breeze, FL. pp. 17. Biota **✓** Water Sediment Media in which methods can be used:

Keywords:

Water quality, volunteer monitoring, QA/QC, sampling

Abstract

This document provides quality assurance objectives for the planned and opportunistic sampling of water and meteorological variables of the Perdido Bay system and its tributaries by volunteers under the Citizens Monitoring Programs. Water quality parameters include Secchi disk, dissolved oxygen, temperature, salinity, and water level ("tide"). Meterologic parameters include: air, and water temperature, wind speed and direction, and rainfall. A comprehensive quality assurance methodology is presented to address all aspects of the volunteer monitoring effort. This covers specific sampling procedures, data validation, and quality control checks.

[extracted from document]

Contact: (904) 934-9200

- 1 PROJECT DESCRIPTION
- 2 PROJECT ORGANIZATION AND RESPONSIBILITY
- 3 QA OBJECTIVES FOR THE MEASUREMENT OF DATA
- 4 SAMPLING PROCEDURES
- 5 SAMPLE CUSTODY
- 6 FIELD SAMPLING OPERATIONS
- 7 CALIBRATION PROCEDURES AND FREQUENCY
- 8 ANALYTICAL PROCEDURES
- 9 DATA REDUCTION, VALIDATION, AND REPORTING
- 10 FIELD AND LABORATORY QUALITY CONTROL CHECKS
- 11 PERFORMANCE AND SYSTEM AUDITS
- 12 PREVENTIVE MAINTENANCE
- 13 SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION, ACCURACY, AND COMPLETENESS
- 14 CORRECTIVE ACTION
- 15 QUALITY ASSURANCE REPORTS TO MANAGEMENT

Reference No.: 063

U.S. EPA. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. U.S. Environmental Protection Agency, Office of Water Assessment and Watershed Protection Division. pp. 185. EPA/444/4-89-001.
Media in which methods can be used: Water Sediment Biota
Keywords: Biological characterization, water quality, sampling, population/community

Abstract

The primary purpose of this document is to provide States with a practical technical reference for conducting cost-effective biological assessments of lotic systems. The protocols presented are not necessarily intended to replace those already in use by State agencies. Instead, they provide options for agencies that wish to implement rapid biological assessment techniques. Three macroinvertebrate and two fish protocols are presented: benthic Rapid Bioassessment Protocol I (RBP I) and fish Rapid Bioassessment Protocol IV (RBP IV) are cost-effective screening procedures that provide some supporting data; benthic Rapid Bioassessment Protocol II (RBP II) can help set priorities for more intensive evaluations; and benthic Rapid Bioassessment Protocol III (RBP III) and fish Rapid Bioassessment Protocol V (RBP V) are progressively more rigorous and provide more confirmational data, but also require more resources. The choice of a particular protocol should depend on the purpose of the bioassessment, the need to document conclusions with confirmational data, the degree of discrimination desired, and available resources. Although the benthic protocols were designed and tested in wadable freshwater streams rather than large rivers (or lakes, estuaries, or marine systems), the fundamental approach should be applicable to large freshwater rivers as well. The fish protocols were validated in freshwater streams and large rivers and are applicable to both.

The rapid bioassessment protocols can also be applied to other areas, for example:

- characterizing the existence and severity of use impairment
- helping to identify sources and causes of use impairment
- evaluating the effectiveness of control actions
- supporting use attainability studies
- · characterizing regional biotic components

[extracted from document]

Contact: (202) 260-7040

1 INTRODUCTION

Purpose of this Document

Development of this Document

A Framework for Implementing the Rapid Bioassessment Protocols

2 THE CONCEPT OF BIOMONITORING

Biosurveys, Bioassays, and Chemical Monitoring

Use of Different Taxonomic Groups in Biosurveys

Station Siting

Importance of Habitat Assessment

The Ecoregion Concept

Data Management and Analysis

Integration into BIOS

Computerizing Field Data for Calculation of the Metrics

Benthic Community Considerations

Seasonality for Benthic Collections

Benthic Sampling Methodology

Natural and Artificial Substrates

Single and Multiple Habitat Sampling

Sampling Coarse Particulate Organic Material (CPOM)

Benthic Sample Processing and Enumeration

Benthic Environmental Tolerance Characterizations

Fish Community Considerations

Seasonality for Fish Collections

Fish Sampling Methodology

Use of Electrofishing, Seining, and Rotenoning

Sampling Representative Habitat

Fish Sample Processing and Enumeration

Fish Environmental Tolerance Characterizations

3 OVERVIEWS OF PROTOCOLS AND SUMMARY OF COMPONENTS

Summary of the Protocols

Objectives of the Protocols

Level of Effort and Investigator Expertise

4 QUALITY ASSURANCE/QUALITY CONTROL

Program Description

Data Quality Objectives

Quality Assurance Program Plans and Project Plans

EPA Responsibilities

Importance of QA/QC for Rapid Bioassessments

5 HABITAT ASSESSMENT AND PHYSICOCHEMICAL PARAMETERS

Physical Characteristics and Water Quality

Physical Characterization

Water Quality

Habitat Assessment

Primary Parameters -- Substrate and Instream Cover

Secondary Parameters -- Channel Morphology

Tertiary Parameters -- Riparian and Bank Structure

6 BENTHIC MACROINVERTEBRATE BIOSURVEY AND DATA ANALYSIS

Rapid Bioassessment Protocol I -- Benthic Macroinvertebrates

Field Methods

Data Analysis Techniques

Rapid Bioassessment Protocol II -- Benthic Macroinvertebrates

Field Methods

Sample Collection

Sample Sorting and Identification

Data Analysis Techniques

Rapid Bioassessment Protocol III -- Benthic Macroinvertebrates

Field Methods

Sample Collection

Field Processing of the CPOM Sample

Lab Methods

Sample Sorting and Identification

Data Analysis Techniques

Results of a Pilot Study Conducted on the Ararat and Mitchell Rivers,

North Carolina

Introduction

Methods

Field Collections

Laboratory Processing

Quality Assurance

Bioclassification of Stations Based on the North Carolina DEM

Protocol

Selection of Metrics

Comparison of Multihabitat vs. Single Habitat Collections

Evaluation of the 100-Organism Subsample

Integrated Bioassessment

7 FISH BIOSURVEY AND DATA ANALYSIS

Rapid Bioassessment Protocol IV -- Fish

Design of Fish Assemblage Questionnaire Survey

Response Analysis

Rapid Bioassessment Protocol IV -- Fish

Field Survey Methods

Sample Collection

Sample Processing

Data Analysis Techniques

Description of IBI Metrics

Results of Pilot Studies in Ohio and Oregon

Methods

Results and Interpretation

8 INTEGRATION OF HABITAT, WATER QUALITY, AND BIOSURVEY DATA

The Relationship Between Habitat Quality and Biological Condition

Bioassessment Technique

An Integrated Assessment Approach

Case Study

APPENDIX A: GUIDANCE FOR THE USE OF FIELD AND LABORATORY DATA SETS

Guidance for Header Information

Guidance for Biosurvey Field Data Sheet for Benthic RBPs I, II, and III Guidance for Impairment Assessment Sheet for Benthic RBPs I, II, III, and V

Guidance for Data Summary Sheet for Benthic RBPs II and III Guidance for Laboratory Bench Sheet for Benthic RBP III Guidance for Field Collection Data Sheet for Fish RBP V Guidance for Data Summary Sheet for Fish RBP V

APPENDIX B: RAPID BIOASSESSMENT SUBSAMPLING METHODS FOR BENTHIC

PROTOCOLS I AND III (100-ORGANISM COUNT TECHNIQUE)

Rapid Bioassessment Subsampling Methods for Protocol II Rapid Bioassessment Subsampling Methods for Protocol III

APPENDIX C: FAMILY AND SPECIES-LEVEL MACROINVERTEBRATE TOLERANCE CLASSIFICATIONS

Family-Level Tolerance Classification

Genus/Species-Level Tolerance Classification

References for Determining Family and Species-Level Tolerance Classifications

A Partial Listing of Agencies that Have Developed Tolerance Classifications and/or Biotic Indices

APPENDIX D: TOLERANCE, TROPHIC GUILDS, AND ORIGINS OF SELECTED FISH SPECIES

Species-Level Fish Tolerance, Trophic, and Origin Classifications

Selected References for Determining Fish Tolerance, Trophic,

Reproductive, and Origin Classifications

Agencies Currently Using or Evaluating Use of the IBI for Water Quality Investigations

U.S. EPA. 1989. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 2nd Ed. Edited by C. I. Weber et al. U.S. Environmental Protection Agency; Office of Research and Development; Office of Modeling, Monitoring Systems, and Ouality Assurance; Environmental Monitoring Systems Laboratory, Cincinnati, OH. EPA/600/4-89/001. (NTIS PB89-207013).

Media in which	methods can be used:	✓ Water	Sediment	Biota
Keywords:	Water quality, toxicity/b	oioassay, data ana	llysis/management, QA/QC	,

Abstract

This manual described short-term (four- to seven-day) methods for estimating the chronic toxicity effluents and receiving waters. The four short term tests described in this manual are for use in the NPDES Program to estimate one or more of the following:

- the chronic toxicity of effluents collected at the end of the discharge pipe
- the chronic toxicity of effluents collected at the end of the discharge pipe consisting of non-toxic receiving water collected upstream from or outside the influence of the outfall, or with other uncontaminated surface water or standard dilution water having approximately the same hardness as the receiving water
- the toxicity of receiving water downstream from or within the influence of the outfall
- the effects of multiple discharges on the quality of the receiving water

The tests may also be useful in developing site-specific water quality criteria. These methods were developed to provide the most favorable cost-benefit relationship possible, and are intended for use in effluent toxicity tests performed on-site or off-site. The tests include:

- a seven-day, sub-chronic, fathead minnow (*Pimephales promelas*), static renewal, larval survival, and growth test
- a three-brood, seven-day, chronic, cladoceran (Ceriodaphnia dubia), static renewal, survival, and reproduction test
- a seven-day, sub-chronic, fathead minnow (Pimephales promelas), static renewal, embryo-larval survival, and teratogenicity test
- a four-day, chronic, algal, (Selenastrum capricornutum), static, growth test

Also included are guidelines on laboratory safety, quality assurance, facilities and equipment, dilution water, effluent sampling and holding, data analysis, report preparation, and organism culturing and handling. Supplementary information on statistical techniques for test design and analysis of toxicity test data is provided in the Appendices. [copied from document]

Contact: (513) 569-7369

- 1 INTRODUCTION
- 2 CHRONIC TOXICITY TEST END POINTS AND DATA ANALYSIS
- 3 HEALTH AND SAFETY
- 4 QUALITY ASSURANCE
- 5 FACILITIES AND EQUIPMENT
- 6 TEST ORGANISMS
- 7 DILUTION WATER
- 8 EFFLUENT AND RECEIVING WATER SAMPLING AND SAMPLE HANDLING
- 9 REPORT PREPARATION
- 10 FATHEAD MINNOW (PIMEPHALES PROMELAS) LARVAL SURVIVAL AND GROWTH TEST
- 11 FATHEAD MINNOW (PIMEPHALES PROMELAS) EMBRYO-LARVAL SURVIVAL AND TERATOGENICITY TEST
- 12 CLADOCERAN (CERIODAPHNIA DUBIA) SURVIVAL AND REPRODUCTION TEST
- 13 ALGAL (SELENASTRUM CAPRICORNUTUM) GROWTH TEST

SELECTED REFERENCES

- APPENDIX A: INDEPENDENCE, RANDOMIZATION, AND OUTLIERS
- APPENDIX B: VALIDATING NORMALITY AND HOMOGENEITY OF VARIANCE ASSUMPTIONS
- APPENDIX C: DUNNETT'S PROCEDURE
- APPENDIX D: BONFERRONI'S T-TEST
- APPENDIX E: STEEL'S MANY-ONE RANK TEST

APPENDIX F: WILCOXON RANK SUM TEST

APPENDIX G: FISHER'S EXACT TEST

APPENDIX H: TOXICITY SCREENING TEST - COMPARISON OF CONTROL WITH 100%

EFFLUENT OR INSTREAM WASTE CONCENTRATION

APPENDIX I: PROBIT ANALYSIS

U.S. EPA. 1990. Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/ PCDF in Fish. U.S. EPA, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA 600/3-90-022.

✓ Biota Water Sediment Media in which methods can be used:

Biological characterization, bioaccumulation, sampling, tissue analysis, organics, **Keywords:**

QA/QC

Abstract

This document describes the analytical methods used for the determination of the level of contamination of 15 biosignificant polychlorinated dibenzo-p-dioxins and dibenzofurans in fish. These analyses are limited by lack of analytical standards: however, isomer specificity may be determined using specially developed standards. Concentrations are determined based on the assumption that the results for the molecular ion of all isomers in a class is equal to the response observed for the isomer for which standards have been developed.

The target minimum levels of detection for specific PCDD/PCDF isomers are:

TCDD, TCDF 1 pg/g PeCDD, PeCDF 2 pg/gHxCDD, HxCDF 4 pg/g HpCDD, HpCDF 10 pg/g

This document is meant to be only a guideline for analyses and the procedures may be modified as needed to satisfactorily analyze any sample.

[extracted from document]

Contact: (218) 720-5500

1 INTRODUCTION

2 SAMPLE PREPARATION

Grinding

Extraction

Percent Lipid Determination

Anthropogenic Chemical Isolation

Florisil Chromatography

PCDD/PCDF Isolation

3 REAGENTS AND STANDARDS

Reagents

Standards

4 INSTRUMENTAL PARAMETERS

5 QUALITY ASSURANCE/QUALITY CONTROL

General Procedures of Operation

Instrumental Quality Control

Evaluation of Data

Accuracy

Precision

Signal Quality Assurance Requirements

Polar Gas Chromatographic Confirmation Analysis

Quality Assurance Problems and Corrective Actions

6 QUANTIFICATION PROCEDURES

Initial and Daily Calibration of the HRMS

Signal Quality

Quantification of PCDD/PCDF

Method Efficiency

Integration of Automated Data Processing and Quality Assurance

U.S. EPA. 1990. Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish. U.S. EPA, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA 600/3-90-023. (NTIS: PB90-192782).

Water ✓ Biota Media in which methods can be used: Sediment

Keywords:

Biological characterization, bioaccumulation, sampling, tissue analysis, organics, PCBs, PAHs, pesticides, OA/OC

Abstract

This document, developed for Phase II of the USEPA National Dioxin Study, describes the analytical procedures and quality assurance plan for the determination of xenobiotic chemical contaminants in fish. The analytical approach includes:

- a simple sample preparation methodology that produces a single extract that minimizes analytical losses
- a procedure that is cost effective in terms of manpower, chemical reagents, and instrumentation
- a characterization and quantification of a certain set of chemical contaminants
- an identification of unknown contaminants by screening the data

The set of analytes quantified was derived through consideration that included data from previous monitoring efforts, toxicology, persistence, bioavailability potential, total yearly production, and feasibility of analyses. Limits of quantification for the target analytes are 2.5 ppb except for PCBs, whose limits vary as follows:

Level of chlorination:

1-3	1.25 ppb
4-6	2.50 ppb
7-8	3.75 ppb
0_10	6.25 nnh

[extracted from document]

Contact: (218) 720-5500

1 INTRODUCTION

2 PREPARATION OF SAMPLE EXTRACT

Sampling Handling Methodology

Shipment of Samples to ERL-Duluth

Sample Logging and Coding Procedures

Tissue Preparation and Storage Procedures

Extraction of Tissue Samples

Soxhlet Extraction

Fortification with Surrogate Standards

Fortification with Target Analytes

3 STANDARDS AND REAGENTS

4 ANALYSIS OF EXTRACTS

Gas Chromatographic Operating Parameters
Mass Spectrometric Operating Parameters

5 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

General Procedures of Operation

Sample Analysis Set

Sample Tracking

Data Storage

Data Review

Procedures for Analytical Quality Assurance

Gas Chromatography - Mass Spectrometry

Gas Chromatography

Column Resolution

Relative Retention Time

Mass Spectrometry

Sensitivity

Spectral Quality

Silica Gel Chromatography

Criteria for Quantitative Analysis

Gas Chromatographic Relative Retention Time

Analyte Identification Criteria

Signal to Noise

Relative Response Factor

Surrogate Standard Recovery

Total Analyte Recovery

Quality Control
Continual Bias Assessment
Continual Precision Assessment
Quality Control Chart

6 QUANTIFICATION OF TARGET ANALYTES

Quantification Procedures

Determination of Minimum Level of Quantification

Reference No.: 067

U.S. EPA. 1990. Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring System Laboratory, Cincinnati, OH. pp. 268 EPA/600/4-90/030. (NTIS: PB91-171363).

Media in which methods can be used:

✓ Water

Sediment

✓ Biota

Keywords:

Biological characterization, water quality, sampling, data analysis, QA/QC

Abstract

This manual described guidelines and standardized procedures for using benthic macroinvertebrates in evaluating the biological integrity of surface (fresh, estuarine, and marine) waters. Included are sections on quality assurance and quality control procedures, safety and health recommendations, selection of sampling stations, sampling methods, sample processing, data evaluation, and an extensive taxonomic bibliography of the benthic macroinvertebrate groups. Supplementary information on the pollution tolerance of selected species, examples of macroinvertebrate bench sheets and macroinvertebrate data summary sheets, and a list of equipment and supplies for conducting biomonitoring studies are provided in the Appendices.

The manual is a revision and enlargement of the chapter on macroinvertebrate methods originally published in the document, "Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents," Environmental Monitoring Series, U.S. EPA, 1973, EPA-670/4-73-001, and was developed in the Aquatic Biology Branch, Environmental Monitoring Systems Laboratory -- Cincinnati to provide biomonitoring programs with current methods for assessing point and non-point sources of impacts, status and trends water quality monitoring. [copied from document]

Contact: (513) 569-7562

1 INTRODUCTION

Literature Cited

2 QUALITY ASSURANCE AND QUALITY CONTROL

Introduction

Data Quality Objectives

Facilities and Equipment

Calibration Documentation and Record Keeping

Qualifications and Training

Standard Operating Procedures

Literature Cited

3 SAFETY AND HEALTH

Introduction

General Precautions

Safety Equipment and Facilities

Field and Laboratory Operations

Disease Prevention

Literature Cited

4 SELECTION OF SAMPLING STATIONS

Introduction

Location of Sampling Stations

Selecting Control Stations

Study Design

Considerations of Abiotic Factors

Literature Cited

5 SAMPLING METHODS

Introduction

Qualitative Sampling

Semi-Quantitative Sampling

Quantitative Sampling

Sampling Devices

Commonly Used Grabs

Stream Net Samplers

Drift Nets

Artificial Substrate Samplers

Coring Devices

Frames

Rapid Bioassessment Protocols

Ohio EPA Invertebrate Community Index Method

Standard Qualitative Collection Method

Miscellaneous Qualitative Devices

Suction Samplers

Photography

Scuba

Brails

Other Mussel Collecting Methods

Literature Cited

6 SAMPLE PROCESSING

Sieving

Preservation and Fixation

Labelling and Record Keeping

Sorting and Subsampling

Preparation of Microscope Slide Mounts

Drying Methods

Organism Identification

Biomass

Literature Cited

7 DATA EVALUATION

Introduction

Analyses of Qualitative Data

Analyses of Semi-Quantitative and Quantitative Data

Rapid Bioassessment Techniques

Community Metrics and Pollution Indicators

Statistical Methods

Literature Cited

8 TAXONOMIC BIBLIOGRAPHY

APPENDIX A: POLLUTION TOLERANCE OF SELECTED MACROINVERTEBRATES

APPENDIX B: HILSENOFF'S FAMILY LEVEL POLLUTION TOLERANCE VALUES FOR

AQUATIC ARTHROPODS

APPENDIX C: EXAMPLES OF MACROINVERTEBRATE BENCH SHEETS

APPENDIX D: EXAMPLE OF MACROINVERTEBRATE SUMMARY SHEET

APPENDIX E: LIST OF EQUIPMENT AND SUPPLIES

Reference No.: 068

U.S. EPA. 1990. Volunteer Water Monitoring: A Guide For State Managers. U.S. Environmental Protection Agency, Office of Water, Washington, DC. pp. 78. EPA 440/4-90-010. (NTIS: PB93-202596).

Media in which methods can be used:

✓ Water

Sediment

Biota

Keywords:

Water quality, volunteer monitoring

Abstract

This guide for State regional, and Federal program managers was developed to provide an overview of the use of citizen volunteers in environmental monitoring. Its basic premise is that a well organized, properly maintained volunteer monitoring program can yield credible water quality data that will be useful to the State. To help State program managers launch and manage such a program, this document discusses how to plan and organize projects, how to involve the media, and how to prepare quality assurance plant that will ensure that the data of known quality are produced. In addition, data management considerations and approached to data analysis are discussed, as well as costs and funding issues. Examples drawn from successful existing programs are provided throughout this document.

This guide begins by providing an overview of existing volunteer monitoring efforts and outlines how to plan a program that will produce high quality data. It then discusses steps in implementing a program, from launching a pilot to maintaining volunteer interest. Considerable focus is directed to providing credible, quality-controlled information and analyzing and presenting data provided by volunteers. This guides goes on to discuss costs and funding issues. The appendix describes five successful State-managed or sponsored programs. For further information on additional volunteer monitoring programs refer to the National Directory of Citizen Volunteer Environmental Monitoring Programs (U.S. EPA, 1990).

This document does not provide detailed information on specific monitoring methods that might apply to a volunteer effort.

[extracted from document]

Contact: (202) 260-7018

1 VOLUNTEERS IN WATER MONITORING

Volunteers Monitor a Variety of Parameters Volunteers Monitor All Types of Waters Volunteers Can Collect Useful Data

2 PLANNING A VOLUNTEER MONITORING PROGRAM

Establish General Goals Identify Data Uses and Users Establish Quality Assurance and Control Assign Staff Responsibilities

3 IMPLEMENTING A VOLUNTEER MONITORING PROGRAM

Establish a Pilot Program

Expand the Program

Make the Most of the Media

Maintain Volunteer Interest and Motivation

4 PROVIDING CREDIBLE INFORMATION

Prepare a Quality Assurance Project Plan Prepare a Data Documentation File Analyze and Present Data

5 COSTS AND FUNDING

Program Expenses
Comparison of Two State Programs
Funding Options
Techniques for Reducing Program Costs

6 REFERENCES

APPENDIX DESCRIPTIONS OF FIVE SUCCESSFUL PROGRAMS

Illinois Volunteer Lake Monitoring Program
Kentucky Water Watch Volunteer Stream Sampling Project
New York Citizen Statewide Lake Assessment Program
Ohio Scenic River Volunteer Monitoring Program
Chesapeake Bay Citizen Monitoring Program

U.S. EPA. 1991. Biological Criteria: Guide to Technical Literature. U.S. Environmental Protection Agency, Office of Water, Washington, DC. pp. 128. EPA-440/5-91-004. (NTIS: PB92-231489).

Media in whic	ch methods can be used:	Water	Sediment	∠ Biota
Keywords:	Biological characteriza analysis	tion, sampling, po	pulation/community, Q	A/QC, data

Abstract

This document is intended to serve as a general technical reference source for publications pertinent to the development of biological criteria. The references listed herein discuss methods and procedures appropriate to the development of biocriteria in streams and rivers, lakes and reservoirs, estuaries and near-coastal areas, and wetlands. It is intended to summarize the references, and provide general information on manpower requirements to implement methods for developing biocriteria.

Each entry in the reference catalog is presented in a standard format. In addition to the basic reference, each entry provides information on the procedure objective, suitability of the entry for the four major water types, advantages and disadvantages of the procedure, level of education needed to perform the procedure, field team size, collection time required, sample processing time, and data analysis time. Each reference is further categorized regarding its applicability to the major subdivisions of habitat assessment, population structure, community structure, population and community interaction, data analysis, and interpretive assessment. Finally, each reference is categorized according to its applicability to community groups of macrophytes, periphyton, phytoplankton, zooplankton, macroinvertebrates, fish, and other vertebrates.

Four appendices contain lists of reference numbers, cross-referenced to an alphabetical list by author, is provided for each of the four major water types, including estuarine and near-coastal waters. References within each appendix are further divided under the major subsections and community groups described above.

Fifty-two of the 210 references are listed as being applicable to estuarine and near-coastal environments. [extracted from document]

Contact: (202) 260-6582

- 1 INTRODUCTION
- 2 THE REFERENCE CATALOG
- 3 THE INFLUENCE OF HABITAT ON BIOLOGICAL INTEGRITY
 Habitat Assessment for Streams and Rivers
 Habitat Assessment for Lakes and Reservoirs
 Habitat Assessment for Estuaries and Near-Coastal Areas
 Habitat Assessment for Wetlands
- 4 BIOSURVEY METHODS TO ASSESS BIOLOGICAL INTEGRITY

Biotic Assessment in Freshwater
Biotic Assessment in Estuaries and Near-Coastal Areas
Biotic Assessment in Wetlands

5 DATA ANALYSIS

Sampling Strategy and Statistical Approaches
Diversity Indices
Biological Indices
Composite Community Indices

- APPENDIX A: FRESHWATER ENVIRONMENTS
- APPENDIX B: ESTUARINE AND NEAR-COASTAL ENVIRONMENTS
- APPENDIX C: WETLANDS ENVIRONMENT
- APPENDIX D: ALPHABETICAL AUTHOR/REFERENCE NUMBER CROSS-INDEX FOR THE REFERENCE CATALOG
- APPENDIX E: REFERENCE CATALOG ENTRIES

Reference No.: 070

U.S. EPA. 1991. Methods for Aquatic Toxicity Identification Evaluations, Phase I Toxicity Characterization Procedures, 2nd ed. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA/600/6-91/003. (NTIS: PB92-100072).

Media in which methods can be used:	✓ Water	Sediment	Biota

Keywords: Water quality, sediment quality, toxicity/bioassay, sampling

Abstract

This Phase I document is the first of a three phase series of documents that provide methods to characterize and identify the cause of toxicity in effluents. The first phase of the series, Phase I, characterized the physical/chemical nature of the acute and chronic toxicant(s), thereby simplifying the analytical work needed to identify the toxicant(s). Phase II provides guidance to identify the suspect toxicants, and the last phase, Phase III provides methods to confirm that the suspect toxicants are indeed the cause of toxicity. These recent TIE documents have been produced or revised to include chronic toxicity recommendations and additional information or experiences we have gained since the original methods were printed.

The manual describes procedures for characterizing the physical/chemical nature of toxicants in acutely toxic effluent samples, with applications to other types of samples such as receiving water samples, sediment pore water or elutriate samples, and hazardous wastes. The presence and the potency of the toxicants in the samples are detected by performing various manipulations on the sample and by using aquatic organisms to track the changes in the toxicity. This toxicity tracking step is the basis of the toxicity identification evaluation (TIE). The final step is to separate the toxicants from the other constituents in the sample in order to simplify the analytical process. Many toxicants must be concentrated for analysis.

Since the first document was developed, additional options or new procedures have been developed. For example, additional options are provided in the EDTA and sodium thiosulfate addition tests, and in the graduated pH test. Also a discussion has been added for testing the effluent sample over time (weekly) to measure the rate of decay of toxicity which is used to detect the presence of degradable substances, particularly chlorine or surfactants. Guidance for characterizing whether a toxicant(s) removed by aeration is sublatable is described, and techniques for characterizing filterable toxicity and a discussion of C₁₈ solid phase extraction elutable toxicity has been added. Use of multiple manipulations is discussed and example interpretations of the results of the Phase I manipulations are provided.

Additional manuals describe the methods used to specifically identify the toxicants (Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity) and to confirm whether or not the suspected toxicant(s) is the actual toxicant(s) (Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity). [copied from document]

Contact: (513)369-7562

- 1 INTRODUCTION
- 2 HEALTH AND SAFETY
- **3 QUALITY ASSURANCE**

TIE Quality Control Plans

Cost Considerations/Concessions

Variability

Intra-Laboratory Communication

Record Keeping

Phase I Considerations

Phase II Considerations

Phase III Considerations

- 4 FACILITIES AND EQUIPMENT
- 5 DILUTION WATER
- 6 EFFLUENT SAMPLING AND HANDLING Sample Shipment and Collection in Plastic Versus Glass
- 7 TOXICITY TESTS

Principals

Test Species

Toxicity Test Procedures

Test Endpoints

Feeding

Multiple Species -

8 PHASE I TOXICITY CHARACTERIZATION TESTS

Initial Effluent Toxicity Test

Baseline Effluent Toxicity Test

pH Adjustment Test

pH Adjustment/Filtration Test

pH Adjustment/Aeration Test

pH Adjustment/C₁₈ Solid Phase Extraction Test

Oxidant Reduction Test

EDTA Chelation Test

Graduated pH Test

9 TIME FRAME AND ADDITIONAL TESTS

Time Frame for Phase I Studies When Phase I Tests Are Inadequate Interpreting Phase I Results Interpretation Examples

10 REFERENCES

Reference No.: 071

U.S. EPA. 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th ed. Edited by C. I. Weber. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. EPA-600/4-90-027.

Note: This document was revised and republished in 1993 under the same title and with Report No. EPA-600/4-90-027F. (NTIS: P394-114733).

Media in which	methods can be used:	✓ Water	Sediment	Biota
Keywords:	Water quality, sampling,	toxicity/bioassays,	QA/QC, data anal	lysis/management

Abstract

This manual describes methods for measuring the acute toxicity of effluent to freshwater, estuarine, and marine macroinvertebrates and fish. The methods include:

- single and multiple concentration static non-renewal
- · static-renewal
- flow-through toxicity tests for effluents and receiving waters

The acute toxicity tests described are for use in the National Pollutant Discharge Elimination System (NPDES) Permits Program to identify effluents and receiving waters containing toxic materials in acutely toxic concentrations. The methods included in this annual are referenced in Table IA, 40 CFR Part 136 regulations and, therefore, constitute approved methods for acute toxicity tests. They are also suitable for determining the toxicity of specific compounds contained in discharges. The tests may be conducted in a central laboratory or on-site, by the regulatory agency or the permittee.

Data can also be used to predict potential acute and chronic toxicity in the receiving water, based on the LC50 and appropriate dilution, application, and persistence factors. The tests are performed as a part of self-monitoring permit requirements, compliance biomonitoring inspections, toxics sampling inspections, and special investigations.

Modifications of these tests are also used in toxicity reduction evaluations and toxicity identification evaluations to identify the toxic components of an effluent, to aid in the development and implementation of toxicity reduction plans, and to compare and control the effectiveness of various treatment technologies for a given type of industry, irrespective of the receiving water.

Also included are guidelines on laboratory safety; quality assurance; facilities and equipment; test species selection and handling; dilution water; effluent and receiving water sample collection, preservation, shipping, and holding; test conditions; toxicity test data analysis; report preparation; organism culturing; and dilutor and mobile laboratory construction. [copied from document]

Contact: (513) 569-7369

1 INTRODUCTION

2 TYPES OF TESTS

3 HEALTH AND SAFETY

General Precautions

Safety Equipment

General Laboratory and Field Operations

Disease Prevention

Safety Manuals

Waste Disposal

4 QUALITY ASSURANCE

Introduction

Facilities, Equipment, and Test Chambers

Test Organisms

Laboratory Water Used for Culturing and Test Dilution Water

Effluent Sampling and Sample Handling

Test Conditions

Quality of Test Organisms

Food Quality

Acceptability of Acute Toxicity Test Results

Analytical Methods

Calibration and Standardization

Replication and Test Sensitivity

Variability in Toxicity Test Results

Demonstrating Acceptable Laboratory Performance

Documenting Ongoing Laboratory Performance

Reference Toxicants

Recordkeeping

5 FACILITIES AND EQUIPMENT

General Requirements

Cleaning Test Chambers and Laboratory Apparatus

Apparatus and Equipment for Culturing and Toxicity Tests

Reagents and Consumable Materials

Test Organisms

6 TEST ORGANISMS

Test Species

Sources of Test Organisms

Life Stage

Laboratory Culturing
Holding and Handling of Test Organisms
Transportation to the Test Site
Test Organism Disposal

7 DILUTION WATER

Types of Dilution Water
Standard Synthetic Dilution Water
Use of Receiving Water as Dilution Water
Use of Tap Water as Dilution Water
Dilution Water Holding

8 EFFLUENT AND RECEIVING WATER SAMPLING AND SAMPLE HANDLING

Effluent Sampling

Effluent Sample Types

Effluent Sampling Recommendations

Receiving Water Sampling

Effluent and Receiving Water Sample Handling, Preservation, and Shipping

Sample Receiving

Persistence of Effluent Toxicity During Sample Shipping and Holding

9 ACUTE TOXICITY TEST PROCEDURES

Preparation of Effluent and Receiving Water Samples for Toxicity Tests

Preliminary Toxicity Rang-Finding Tests

Multi-Concentration (Definitive) Effluent Toxicity Tests

Receiving Water Tests

Static Tests

Flow-Through Tests

Number of Test Organisms

Replicate Test Chambers

Loading of Test Organisms

Illumination

Feeding

Test Temperature

Stress

Dissolved Oxygen Concentration

Test Duration

Acceptability of Test Results

Summary of Test Conditions for the Principal Test Organisms

10 TEST DATA

Biological Data

Chemical and Physical Data

11 ACUTE TOXICITY DATA ANALYSIS

Introduction

Determination of the LC50 from Definitive, Multi-Effluent-Concentration,

Acute Toxicity Tests

Graphical Method

Spearman-Karber Method

Trimmed Spearman-Karber Method

Probit Method

Determination of No-Observed-Adverse-Effect

Concentration (NOAEC) from Multi-Concentration Test, and Determination of Pass or Fail (Pass/Fail) for Single-concentration (Paired) Tests

General Procedure

Single Concentration Test

Multi-Concentration Test

12 REPORT PREPARATION

CITED REFERENCES

BIBLIOGRAPHY

APPENDIX A: DISTRIBUTION, LIFE CYCLE, TAXONOMY, AND CULTURE AND HOLDING

METHODS

Daphnid, Ceriodaphnia dubia

Daphnids, Daphnia pulex and D. magna

Myusid, *Mysidopsis bahia*Brine Shrimp, *Artemia salina*

Fathead Minnow, Pimephales promelas

Rainbow Trout, Oncorhynchus mykiss and Brook Trout, Salvelinus

fontinalis

Sheepshead Minnow, Cyprinodon variegatus

Siversides: Inland Silverside, Menidia beryllina, Atlantic Silverside, M.

menidia, and Tidewater Silverside, M. peninsulae

APPENDIX B: SUPPLEMENTAL LIST OF ACUTE TOXICITY TEST SPECIES

APPENDIX C: DILUTOR SYSTEMS

Solenoid and Vacuum Siphon Dilution Systems

Solenoid System Equipment List Vacuum System Equipment List Dilutor Control Panel Equipment List APPENDIX D: PLANS FOR MOBILE TOXICITY TEST LABORATORY

Tandem-axle Trailer Fifth-wheel Trailer

APPENDIX E: CHECKLISTS AND INFORMATION SHEETS

Toxicity Test Field Equipment List

Information Checklist for On-site Industrial and Municipal Waste Toxicity

Tests

Daily Events Log

Dilutor Calibration Form

Daily Dilutor Calibration Check

U.S. EPA. 1991. Methods for the Determination of Metals in Environmental Samples. U.S. Environmental Protection Agency, Environmental Monitoring System Laboratory, Office of Research and Development, Cincinnati, OH. EPA 600-4-91-010. (NTIS: PB91-231498).

Media in which methods can be used: Water Sediment Biota

Keywords: Water quality, sediment quality, metals, tissue analysis, sampling, QA/QC

Abstract

Thirteen analytical methods covering 35 analytes which may be present in a variety of environmental sample types are described in detail. Three of these methods are sample preparation procedures that require a separate determinate step found in other methods in this manual or elsewhere. These methods involve a wide range of analytical instrumentation including inductively coupled plasma (ICP)/atomic emission spectroscopy (AES), ICP/mass spectroscopy (MS), atomic absorption (AA) spectroscopy, ion chromatography (IC), and high performance liquid chromatography (HPLC). Application of these techniques to a diverse group of sample types is a somewhat unique feature of this manual. Sample types include waters ranging from drinking water to marine water as well as industrial and municipal wastewater, groundwater, and landfill leachate. Also included are methods that will accommodate biological tissues, sediments, and soils.

The methods in this manual are not intended to be specific for any single EPA regulation, compliance monitoring program, or specific study. In the past, manuals have been developed and published that respond to specific regulations, such as the Safe Drinking Water Act (SDWA) or to special studies such as the Environmental Monitoring and Assessment Program (EMAP) Near Coastal Demonstration Project. These methods are, however, available for incorporation into several regulatory programs due to their applicability to such diverse sample types. The ICP/AES, ICP/MS, and AA methods have been or will be approved for use in the drinking water and the permit programs. The methods applicable for use in marine and estuary waters will be available for use in the Agency's National Estuary Program and subsequent EMAP studies that may involve the determination of toxic metals in the water column.

The quality assurance sections are uniform and contain minimum requirements for operating a reliable monitoring program: initial demonstration of performance, routine analyses of reagent blanks, analyses of fortified reagent blanks and fortified matrix samples, and analyses of quality control (QC) samples. Other QC practices are recommended and may be adopted to meet the particular needs of monitoring programs e.g., analyses of field reagent blanks, instrument control samples, and performance evaluation samples.

The names of authors of the methods are provided to assist users in obtaining direct telephone support when required.

[copied from document]

Contact: (513) 569-7586

1 ANALYTE - METHOD CROSS REFERENCE

ANALYTICAL METHODS	METHOD NO.
2 INTRODUCTION AND GENERAL COMMENTS Determination of Acid Soluble Metals	200.1
Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements	200.2
Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements in BiologicalTissues	200.3
Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry	200.7
Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma – Mass Spectrometry	200.8
Determination of Trace Elements by Stabilized Temperature Graphite Furnace Atomic Absorption Spectrometry	200.9
Determination of Trace Elements in Marine Waters by On-Line Chelation Preconcentration and Inductively Coupled Plasma – Mass Spectrometry	200.10
Determination of Metals in Fish Tissue by Inductively Coupled Plasma – Atomic Emission Spectrometry	200.11
Determination of Dissolved Hexavalent Chromium in Drinking Water, Groundwater and Industrial Wastewater Effluents by Ion Chromatography	218.6
Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry	245.1
Determination of Inorganic Mercury (II) and Selected Organomercurials in Drinking and Ground Water by High Performance Liquid Chromatography (HPLC) with Electrochemical Detection (ECD)	245.3

Determination of Mercury in Sediment by Cold Vapor Atomic Absorption Spectrometry	245.5	
Determination of Mercury in Tissues by Cold Vapor Atomic Absorption Spectrometry	245.6	

Reference No.: 073

U.S. EPA. 1991. A Project Manager's Guide to Requesting and Evaluating Chemical Analyses. U.S. Environmental Protection Agency, Region 10, Puget Sound Estuary Program, Seattle, WA. EPA 910/9-90-24. (NTIS: PB92-132794).

Media in which methods can be used: ✓ Water ✓ Sediment ☐ Biota

Keywords: Water quality, sediment quality, QA/QC, data analysis

Abstract

The purpose of this manual is to help less-experienced project managers from governmental agencies, industry, and environmental groups in requesting appropriate chemical analyses and in making an informed evaluation of the results. Many project managers are not chemists, but most may need to plan for, request, discuss, or evaluate chemical analyses. Even after the results have been received and interpreted, many managers must still defend the project data or critical decisions made by themselves or staff. This manual is designed to guide the nonchemist. Strategies are presented throughout the manual for choosing options ranging from simple to more complex plans, requirements, analyses, or evaluations. When applicable, the relative cost consequence of these options, ranging from inexpensive to more expensive, is also described.

The manual is not intended to take the place of technical experts, whose advice may be needed at times to assist with problems specific to each analytical effort. However, by using the detailed information and checklists provided in this manual, and by seeking the advice of a chemist or experienced quality assurance specialist where needed, project managers should be better able to make analytical requests and to evaluate the general quality of results received from chemical laboratories. For example, the preliminary evaluation of results provides guidance on determining when results are likely to be clearly acceptable, clearly unacceptable, or will require a more detailed review by a specialist. This preliminary evaluation is made using six major criteria for data completeness and laboratory performance, including analytical accuracy and sensitivity. Response measures are described for common deficiencies in analyses to provide both a better sense of what can be done easily by the manager and what questions should be asked of the laboratory or a specialist, if needed.

[extracted from document]

Contact: (206) 553-1368

- 1 DEFINING ANALYTICAL OBJECTIVES
- 2 PLANNING FOR QUALITY ASSURANCE
- 3 ASSURING QUALITY DURING SAMPLE COLLECTION
- 4 CHOOSING ANALYTICAL METHODS AND QUALITY CONTROL CHECKS
- 5 WORKING WITH AN ANALYTICAL LABORATORY
- 6 EVALUATING DATA FROM THE LABORATORY
- APPENDIX A: U.S. EPA PRIORITY POLLUTANT AND HAZARDOUS SUBSTANCE LIST
- APPENDIX B: SIMPLIFIED DESCRIPTIONS OF CALIBRATION METHODS, QUALITY CONTROL CHECKS, AND ANALYTICAL METHODS
- APPENDIX C: EXAMPLE STATEMENT OF WORK FOR CONTRACTING WITH AN ANALYTICAL LABORATORY
- APPENDIX D: A SUMMARY REPORT OF A DETAILED QUALITY ASSURANCE REVIEW OF DATA
- APPENDIX E: EXAMPLES OF MISCELLANEOUS FORMS USED FOR SAMPLING AND ANALYSIS

U.S. EPA. 1991. Volunteer Lake Monitoring: A Methods Manual. Prepared by J. Simpson for U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Assessment and Watershed Protection Division, Washington, DC. pp. 129. EPA 440/4-91-002. (NTIS: PB92-218411).

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, turbidity, pH, temperature, dissolved oxygen, pathogenic organisms, population/community

Abstract

The EPA has developed this manual to present specific information on volunteer lake water quality monitoring methods. It is tended both for the organizers of the volunteer program, and for the volunteer who will be actually sampling lake conditions. Its emphasis is on identifying appropriate parameters to monitor and setting out specific steps for each selected monitoring method. Careful quality assurance/ quality control procedures are advocated throughout this manual to ensure that the data collected by volunteers are useful to States and other agencies.

This manual begins by summarizing the steps necessary to plan and manage a volunteer monitoring program, including setting general goals, identifying the uses and users of collected data, and establishing sound quality assurance procedures. Rather than addressing every parameter and method that might be monitored by the citizen volunteer, this manual concentrates special attention on three of the most common lake pollution problems: increased algal growth, increased growth of rooted aquatic plants; and lowered or fluctuating levels of dissolved oxygen. All three are common symptoms of human-induced eutrophication. Other lake conditions that can be monitored by volunteers are also briefly discussed including sedimentation, turbidity, lake acidification, and bacteriological condition.

Although this manual is written specifically for volunteer monitoring of lakes, all the general principles of organization and most of the specific methods can be applied to estuarine water bodies as well. [extracted from document]

Contact (202) 260-7018

1 INTRODUCTION

Purpose of this Manual Manual Organization

Planning a Monitoring Program

2 FOCUSING ON A LAKE CONDITION

Introduction

Algae

Aquatic Plants

Dissolved Oxygen

Other Lake Conditions

3 MONITORING ALGAE

Algal Condition Parameters

Where to Sample

Where to Sample in the Water Column

Frequency of Sampling

Length of the Sampling Season

How to Sample

Notes on Equipment

4 MONITORING AQUATIC PLANTS

Aquatic Plant Condition Parameters

Sampling Considerations

How to Sample

5 MONITORING DISSOLVED OXYGEN

Dissolved Oxygen Parameters

Sampling Considerations

How to Sample

6 MONITORING OTHER LAKE CONDITIONS

Monitoring Sedimentation

Monitoring Suspended Sediment

Monitoring Acidification

Monitoring the Bacteria at Bathing Beaches

7 TRAINING CITIZEN VOLUNTEERS

The Training Process

Creating a Job Analysis

Planning the Training

Presenting the Training
Evaluating the Training
Follow-up Coaching, Motivation, and Feedback

8 PRESENTING MONITORING RESULTS

Overview of Data Presentations Algae Results Aquatic Plant Results Dissolved Oxygen Results

APPENDIX: SCIENTIFIC SUPPLY HOUSES

		:		*
	ж			30 N
,				
			ł	

U.S. EPA. 1992. Consumption Surveys for Fish and Shellfish. A Review and Analysis of Survey Methods. U.S. Environmental Protection Agency, Office of Water and Office of Science and Technology, Washington, DC. EPA 822/R-92-001. (NTIS: PB92-231539). Water Media in which methods can be used: Sediment ✓ Biota **Keywords:** Biological characterization, sampling, OA/OC, data management

Abstract

Although several studies have demonstrated that fish and shellfish consumption rates differ both regionally and within specific subpopulations, most States do not have available sufficient data to calculate local consumption rates or to identify special populations at risk. Examples of these special populations are recreational and subsistence anglers and members of their households -- in particular, women of childbearing age, children, and the elderly -- who frequently consume fish obtained from contaminated sites. This report was designed as a critical assessment of fish tissue consumption rate survey approaches and methods and their applicability for estimating consumption rates in recreational and subsistence fish populations. Additional information is provided to assist Federal and State agencies in developing appropriate surveys to answer questions and resolve issues related to the fish consumption rates of special populations.

Five approaches to obtaining fish consumption data were reviewed:

- recalled information collected by telephone
- recalled information collected by in-person (face-to-face) interviews
- recalled information requested on self-administered mailed questionnaires
- diaries maintained by anglers
- on-site creel censuses

Five elements common to all surveys have been identified, and specific methodological details are provided to help solve problems that may be encountered when undertaking a fish consumption survey.

- Survey design must address the purpose for which the survey is to be conducted, the resources available for carrying it out, including time and funding available, and the approach to be used.
- Survey participants should be identified from a pool of subsistence or recreational anglers, and the method by which the sample is selected may vary depending on the approach that will be used to collect the data and how the data will be analyzed.
- The information to be collected should examine sociodemographic factors that may influence fish consumption rates, as well as those factors that are needed to calculate fish consumption rates, minimizing the number of assumptions that could compromise results. The survey length and complexity should be carefully considered in order to elicit maximum cooperation from respondents.

075

- Appropriate quality assurance procedures need to be developed before beginning the survey, and quality control must be carefully monitored during the survey to ensure the validity of the data before statistical analyses are conducted.
- Data processing procedures and statistical analyses should be performed to provide the desired information and correlations.

[extracted from document]

Contact: (202) 260-7786

- 1 INTRODUCTION
- 2 SURVEY APPROACHES

Recall - Telephone Survey

Recall - Mail Survey

Recall - Personal Interview

Diary

Creel Census

3 IMPORTANT METHOD CONSIDERATIONS

Survey Design

Selection of Respondents

Information Sought

Quality Assurance

Statistical Analyses

- 4 DISCUSSION
- 5 BIBLIOGRAPHY

APPENDIX: SUMMARY OF SURVEY METHODS INFORMATION

Reference No.: 076

U.S. EPA. 1992. Environmental Monitoring Methods Index, Version 1.0. U.S. Environmental Protection Agency, Environmental Monitoring Management Council, Washington, DC. pp. 112 + three software diskettes. (NTIS: PB92-503093).

Media in which methods can be used: Water Sediment Biota

Keywords: Water quality, sediment quality, dissolved oxygen, pH, inorganics, organics, pesti-

cides, PAHs, PCBs

Abstract

The Environmental Monitoring Methods Index (EMMI) is a computerized database listing environmentally significant analytes that are monitored by EPA, methods for analyte analysis, and the regulatory lists on which analytes appear. This database is designed to aid environmental program managers and others who must develop lists of analytes for study, identify appropriate analytical methods for a particular analyte and matrix, and locate primary sources to assist in making new environmental policies.

The present version covers updates in the Code of Federal Regulations and Federal Register through June 1991. EMMI encompasses a total of 2,607 analytes, 49 lists, and 1,167 methods, and includes a database cross-reference with 5,740 analytes. Chemical Abstract Service (CAS) registry numbers are used to unambiguously identify analytes and to cross-reference other databases.

This database contains detailed information on analytes from environmentally significant lists, methods and apparatuses used to identify those analytes, source documents containing information referenced in EMMI, organizations that promulgate the lists and methods, and vendors of analytical standards. Where possible. Descriptions have been simplified to render EMMI accessible to individuals with a basic understanding of analytical chemistry or environmental science.

Information available on regulated pollutants, analytical methods, and regulatory and monitoring lists includes:

- the CAS number, names, and synonyms of each regulated pollutant
- 50 regulatory and office based lists associated with CAA, CERCLA, CWA, EPCRA, HSWA, CRA, SARA, SDWA, and other legislation
- laws, EPA regulations, and legal decisions
- summaries of 926 analytical methods used to identify and quantify the pollutant
- detection limits for analytical methods appropriate for air, water, soil, and sludge matrices
- · manufacturers of analytical standards
- · regulatory limits
- 42 government offices and contacts responsible for related lists and analytical methods

This abstract was excerpted from:

W.A. Telliard, EPA's Environmental Monitoring Methods Index: Linking Environmentally Significant Analytes, Methods, and Lists. *Environmental Science & Technology*, January, 1993, pp. 39-41.

Contact: (703) 519-1222

TABLE OF CONTENTS (SOFTWARE OVERVIEW)

ANALYTES (identified by CAS number and names)

LISTS (lists of analytes that have occurred in regulatory context)

METHODS (analytical method appropriate to target analyte)

DETECTION LIMIT

ACRONYMS (as used by particular organizations)

REGULATORY LIMIT

ACRONYMS (as used by particular regulatory agencies)

METHOD VALIDATION

ACRONYMS (as used by particular organizations)

ORGANIZATIONS (agencies that promulgate the lists and methods covered by this index)

APPARATUS (apparatus used in methods)

DOCUMENTS (interesting documents relating to lists and vendors)

LAWS (laws relating to lists and references to other pertinent laws)

VENDORS (vendors of standards as listed for each analyte)

U.S. EPA. 1992. Field Operations and Safety Manual: EMAP-Estuaries 1992 Virginian Province. Preliminary Draft. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Narraganesett, RI. pp. 210. EPA/600/x92/xxx.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, QA/QC,

dissolbed oxygen, salinity, temperature

Abstract

The Environmental Monitoring and Assessment Program (EMAP) is a nationwide program initiated by the Environmental Protection Agency (EPA) in 1990. The purpose of this program is to monitor annually the condition of all the Nation's major ecosystems. As a component of the Near-Coastal (EMAP-NC) Program, annual sampling will be conducted in the Virginian Province (Cape Cod, MA to Cape Henry, VA).

The purpose of this document is to provide detailed instructions on all field sampling methods. Two versions of this document are available: the unabridged brainy version and an abbreviated version for use in the field. This version contains only the pertinent information needed to successfully complete sampling activities.

Procedures described in the manual include the collection of temperature, salinity, dissolved oxygen, pH, transmissivity, fluorescence, and photosynthetically activated radiation using electronic instrumentation. Sediment and water sampling and fish trawl protocols are listed also. Sample storage, packaging, and shipping are addressed, as are instructions for field filtrations for dissolved oxygen.

This manual describes, in detail, all field collection methods, including Quality Assurance (QA) and safety. It is designed to serve as a guide for field personnel and to be carried on the boats at all times. An effort has been made to anticipate problems and questions that may arise, and to include information on resolving them. All methods, as described in this manual are standard operating procedures, and are to be adhered to by all field personnel. As [if] methods change, an updated version of the pertinent section[s] will be prepared and incorporated into this manual. [copied from document]

Contact: (401) 782-3000

1 INTRODUCTION

Introduction

Near Coastal Program

EMAP - Estuaries Virginian Province Sampling Effort

2 OVERVIEW OF FIELD SAMPLING ACTIVITIES

Sampling Period

Sampling Design

Indicators of Ecosystem Health

Site Reconnaissance

3 DESCRIPTION OF FIELD TEAMS

Personnel

Station Assignments

Equipment

Chain-of-Command

4 SAFETY

Training

Swimming Proficiency Requirement

Priorities

Accidents

Personnel Emergency Information

Operation of Equipment

Safety Equipment

Weather Conditions

Responsibility for Safety

Boat Itinerary

Handling of Hazardous Materials

Proper Handling of Potentially Hazardous Samples

5 TRAINING

Crew Chief (Chief Scientist) Training

Crew Training

6 LAND-BASED FACILITIES

Mobile Laboratories

Base Facilities

Field Operations Center

7 PROFESSIONALISM

General Contact with the Public

Operation of Motor Vehicles

Operation of Boats

Radio Operation

Waste Disposal

8 VEHICLE OPERATION

General Guidelines

Procedures Following an Accident

Trailering Guidelines

Operation of Winch

Operation of the CB Radios

9 OPERATION OF THE BOATS

Weather Conditions

Launching and Recovering Procedures

Mast Assembly and Antennae Set-Up

Gear Check-Out and Loading

Navigation System

General Policies Underway

Radio Operations

Radar Operation

Winch Operation

Emergencies/Accidents

Equipment Failure/Repair

10 ON-BOARD COMPUTER SYSTEM DATA ACQUISITION SYSTEM

Data Acquisition System

11 NAVIGATION SYSTEM

Introduction

GPS Initialization

GPS Use and Status

EDAS Calibration

System Calibration

Point Calibration

12 COMMUNICATIONS

Electronic Transfer of Data

Communication with the Field Operations Center

Ship-to-Shore Communications

Truck-to-Truck Communications

13 SAMPLING SCHEDULE AND STATION TYPES

Sampling Schedule Station Types

14 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE

Sea-Bird Sealogger CTD YSI Model 58 CTD Dockside QC Checks Obtaining a CTD Profile

15 SEDIMENT COLLECTION

Introduction

16 FISH TRAWLS

The EMAP Otter Trawl Trawl Preparation Net Deployment Trawling Net Retrieval Endangered Species Sample Processing

17 PACKAGING AND SHIPPING SAMPLES

Proper Packaging Methods
Benthic Species Composition and Biomass Samples
Grain Size Samples
Sediment Chemistry Samples
Sediment AVS Samples
Sediment Toxicity Samples
Fish Chemistry Samples
Fish Chemistry Samples
Fish Histopathology Samples
Fish QA Samples
Total Suspended Solids Samples
Field Computer Diskettes

18 CONTINGENCY PLANS

Adverse Weather Conditions Station Inaccessibility Equipment Failure

19 MAINTENANCE

GRiD Computers

Sea-Bird CTD
Boats, Motors, and Vehicles

20 QUALITY ASSURANCE

Data Quality Objectives
QA Procedures

21 FIELD DATA BASE MANAGEMENT

Events Numbering SAMPLEIDs and Sample Numbers

22 WASTE DISPOSAL

Routine Garbage
Detergent Washes
Formalin and Dietrich's Fixative
Fish Waste

23 CONTACT PERSONNEL

24 LOST GEAR

Recovery of a DataSonde Mooring Recovery of a CTD Recovery of a Grab Sampler

25 REFERENCES

APPENDIX A: EQUIPMENT LIST AND DAILY CHECKLISTS

APPENDIX B: HAZARDOUS MATERIALS SAFETY AND HANDLING INFORMATION

APPENDIX C: PERMIT FOR THE OPERATION OF A MARINE BAND VHF RADIO

APPENDIX D: PERFORMING WINKLER TITRATIONS USING THE HACH DO KIT

APPENDIX E: OPERATION OF THE HYDROLAB DATASONDE 3 DATA LOGGER

APPENDIX F: DATA SHEETS

U.S. EPA. 1992. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Samples. U.S. Environmental Protection Agency, Environmental System Laboratory, Office of Research and Development, Cincinnati, OH. EPA 600/R-92/121. (NTIS: PB93-182913).

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, metals, inorganics, organics, nutrients, chloro-

phyll, sampling, QA/QC

Abstract

This manual contains seven methods for determination of nutrients, metals, and chlorophyll. Methods 353.4, revision 1.2, and 365.5, revision 1.3, for the measurement of nitrite + nitrate and orthophosphate, respectively, appeared in the 1991 interim manual. Since then they have undergone multilaboratory validation studies. Method 365.5 performed well in the study and multilaboratory data are presented in the revision of the method that appears here. The performance of Methods 353.2 in the study indicated the cadmium reduction column chemistry and maintenance require further investigation. The method has been retained in this manual so that further testing can continue using a standardized method description.

Method 440.0 for measurement of total particulate carbon and nitrogen is based upon a well established combustion technique. Procedures for partioning the organic and inorganic fractions of carbon are also presented. A multilaboratory study is in progress, and the results will be included in a subsequent revision of the method.

The three metals methods represent current state-of-the-science in metals measurements. Two of the methods are graphite furnace atomic adsorption techniques and the third uses inductively coupled plasma mass spectrometry. Single laboratory performance data are included in the methods. Although few laboratories currently have the instrumentation capabilities to perform all of these methods, it is extremely important to present them in order to stimulate the development of laboratory capability before multilaboratory studies can be conducted.

Method 445.0 is for the determination of chlorophyll-a and the pheopigments using fluorescence detection. This method was evaluated using two natural water samples of primarily green and blue-green algae.

The numbering of methods was correlated with previous EMSL-Cincinnati methods whenever possible. The metals methods are 200 series, the nutrients nitrite + nitrate and orthophosphate are 300 series, and the particulate carbon and nitrogen, and chlorophyll methods are 400 series. [copied from document]

Contact: (513) 569-7586

	METHOD NO.
INTRODUCTION	
DETERMINATION OF TRACE ELEMENTS IN MARINE WATERS BY ON-LINE CHELATION PRECONCENTRATION AND INDUCTIVELY COUPLED PLASMA - MASS SPECTROMETRY (REVISION 1.0)	
DETERMINATION OF TRACE ELEMENTS IN MARINE WATERS BY STABILIZED TEMPERATURE GRAPHITE FURNACE ATOMIC ABSORPTION (REVISION 1.0)	(200.12
DETERMINATION OF TRACE ELEMENTS IN MARINE WATER BY OFF-LINE CHELATION PRECONCENTRATION WITH GRAPHITE FURNACE ATOMIC ABSORPTION (REVISION 1.0)	200.13
DETERMINATION OF NITRITE + NITRATE IN ESTUARINE AND COASTAL WATERS BY AUTOMATED COLORIMETRIC ANALYSIS (REVISION 1.3)	353.4
DETERMINATION OF ORTHOPHOSPHATE IN ESTUARINE AND COASTAL WATERS BY AUTOMATED COLORIMETRIC ANALYSIS (REVISION 1.4)	365.5
DETERMINATION OF CARBON AND NITROGEN IN SEDIMENTS AND PARTICULATES OF ESTUARINE/COASTAL WATERS USING ELEMENTAL ANALYSIS (REVISION 1.4)	440.0
IN VITRO DETERMINATION OF CHLOROPHYLL-A AND PHEOPHY A IN MARINE AND FRESHWATER PHYTOPLANKTON BY FLUORESCENCE (REVISION 1.1)	′TIN 445.0

U.S. EPA. 1992. Monitoring Guidance for the National Estuary Program, Final. U.S. Environmental Protection Agency, Office of Water, Office of Wetlands. Washington, DC. EPA 842 B-92-004).

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, currents, depth, grain size, salinity, turbidity, temperature, sampling, QA/QC, nutrients, metals, dissolved oxygen, oxygen demand, chlorophyll, PAHs, PCBs, organics, toxicity/bioassays, population/community, bioaccumulation, pathogenic organisms

Abstract

This document provides guidance on how to design, implement, and evaluate a monitoring program. The document also describes the essential data required to evaluate environmental risks and trends within an estuarine environment. It is also intended to provide a technical basis for discussions on the development of monitoring program objectives, the selection of monitoring program components, and the allocation of sampling efforts. The intended audience consists of members of National Estuary Programs' Management Committees, and Advisory Committees, program coordinators, and scientific staff. The document may also be useful to other coastal and marine resource managers with monitoring responsibilities.

Five steps are developed for this approach to monitoring design:

- develop monitoring objectives and performance criteria
- establish testable hypotheses and select statistical methods
- select analytical methods and alternative sampling designs
- · evaluate expected monitoring study performance
- implement monitoring study and data analysis

Existing sampling and analytical methods available for monitoring estuarine water quality, sediment quality, biological resources, and human health risk are presented. This methods section is intended to provide a summary of available information and to address the most important issues associated with the design and implementation of the monitoring program. Issues common to all monitoring methods include quality assurance/quality control, statistical design, and data use and limitation considerations.

The integration of existing monitoring efforts into the estuary monitoring program is discussed, as well as coordination with existing federal agency status and trends programs, such as EPA's Ecosystem Monitoring and Assessment Program (EMAP), NOAA's National Status and Trends Program, and the U.S. Geological Survey's National Water Quality Assessment Program. Emphasis is placed on the importance of using standardized protocols within each estuary, and in developing performance-based criteria to evaluate the comparability of analytical methods.

Two case studies from existing estuarine monitoring programs are presented. These examples (from Puget Sound and Chesapeake Bay) demonstrate the process of developing a strategy and the use of statistical methods to evaluate the monitoring plan before and after implementation. [extracted from document]

Contact: (202) 260-6502

1 INTRODUCTION

Background

Recommended Monitoring Design Procedures

Monitoring Program Management

2 DEVELOP MONITORING OBJECTIVES AND PERFORMANCE CRITERIA

Monitoring Program Objectives

Performance Criteria

Additional Guidance

3 ESTABLISH TESTABLE HYPOTHESES AND SELECT STATISTICAL METHODS

Establish Testable Hypothesis

Selection of Statistical Methods

4 SELECT ANALYTICAL METHODS AND ALTERNATIVE SAMPLING DESIGNS

Selection of Field and Laboratory Methods

Alternative Sampling Designs

Use of Existing Monitoring Programs

5 EVALUATE EXPECTED MONITORING PROGRAM PERFORMANCE

Evaluate the Expected Performance of Individual Monitoring Program Components

Evaluate Overall Program Performance

Statistical Power Analysis Methods

6 DESIGN AND IMPLEMENT DATA MANAGEMENT PLAN

Data Management

Data Analysis

7 COMMUNICATE PROGRAM RESULTS

8 REFERENCES

APPENDIX A: CASE STUDIES

The Puget Sound Ambient Monitoring Program Case Study

Purpose and Approach

Development of PSAMP: Institutional Arrangements

The Puget Sound Ambient Monitoring Program

Implementation of PSAMP and Cost

Summary and Recommendations

References

Chesapeake Bay Monitoring Program: Detection of Trends in Estuaries

Purpose and Approach

Chesapeake Bay Program

Evaluation of Monitoring Program Performance

Use of Power Analysis Results

References

APPENDIX B: METHODS

Methods - Introduction

Methods Chapter Format

Quality Assurance/Quality Control (QA/QC) Considerations

Statistical Design Considerations

Literature Cited and References

Water Column Physical Characteristics

Rationale

Monitoring Design Considerations

Existing Analytical Methods

QA/QC Considerations

Statistical Design Considerations

Use of Data

Summary and Recommendations

Literature Cited and References

Water Column Chemistry

[same section headings as above]

Sediment Grain Size

[same section headings as above]

Sediment Chemistry

[same section headings as above]

Plankton: Biomass, Productivity, and Community Structure/Function

[same section headings as above]

Aquatic Vegetation

[same section headings as above]

Benthic Infauna Community Structure

[same section headings as above]

Fish Community Structure [same section headings as above]

Fish and Shellfish Pathobiology [same section headings as above]

Bioaccumulation [same section headings as above]

Bacterial and Viral Pathogens [same section headings as above]

U.S. EPA. 1992. Recommended Analytical Techniques and Quality Assurance/Quality Control Guidelines for the Measurement of Organic and Inorganic Analytes in Marine Sediment and Tissue Samples, Draft. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Narragansett, RI.

✓ Sediment Biota Media in which methods can be used: Water Sediment quality, QA/QC, tissue analyses, inorganics, metals, organics, pesticides, **Keywords:**

PAHs, PCBs

Abstract

This document is intended to provide guidance on the analysis of organic and inorganic analytes in marine sediments and tissues. Its purpose is to suggest analytical methods for measuring contaminants in the low parts-per-billion concentration range. The analytical techniques contained herein are those employed by the U.S. EPA Environmental Research Laboratory in Narragansett, RI for the analysis of marine environmental samples. They are intended, however, to serve only as examples and are not being suggested as EPA standard methods. These methods have been successfully employed on marine samples to achieve these detection limits. Included with the analytical methods are quality assurance/quality control (QA/ QC) guidelines. The overall objective of the document is therefore to ensure that data produced under these guidelines will be of the highest quality, have detection limits necessary for trace level marine samples, and be comparable to data produced by other laboratories employing similar methods.

No procedures have been officially approved by the regulatory agencies for low-level (i.e., low parts-perbillion) analysis of organic and inorganic contaminants in estuarine sediments and tissue samples. This document includes methods that have been used at ERL-N in work related to the EMAP Program and are similar to those that have been used for NOAA's National Status and Trends Program. The EMAP and NS&T programs have chosen not to specifically require that particular analytical methods always be followed, but rather that a performance based program be followed, in which participating laboratories demonstrate proficiency through the regular analysis of Standard or Certified Reference Materials (SRMs or CRMs) or similar types of accuracy-based materials. [extracted from document]

Contact: (401) 782-3000

- 1 INTRODUCTION
- 2 CHEMICAL ANALYSIS OF MARINE SEDIMENT AND TISSUE SAMPLES
- 3 QUALITY ASSURANCE/QUALITY CONTROL GUIDELINES

General QA/QC Requirements

Initial Demonstration of Capability

Initial Calibration

Calculation of Method of Detection Limits

Blind Analysis of Accuracy-Based Material

On-Going Demonstration of Capability

Laboratory Participation in Intercomparison Exercises

Continuing Calibration Checks

Routine Analysis of Reference Materials

Laboratory Reagent Blank

Laboratory Fortified Sample Matrix

Duplicates

Internal Standards

Internal Injection Standards

4 REFERENCES

APPENDIX 1 ANALYTICAL METHODS

Organic Analyses

Tissue Extraction

Sediment Extraction

Extract Cleanup

GC Analysis of Extracts for PCBs and Chlorinated Pesticides

GC/MS Analysis of Extracts for PAHs

Inorganic Analyses

Tissue Digestion

Total Digestion of Sediments

Ultrasonic Digestion of Sediments

Instrumental Analysis of Metals

Reference No.: 081

U.S. EPA. 1992. Sediment Classification Methods Compendium. U.S. Environmental Protection Agency, Office of Water, Washington D.C. EPA 823-R-92-006. (NTIS: PB93-115186).				
Media in whic	ch methods can be used:	Water	✓ Sediment	Biota
Keywords:	Sediment quality, toxici	ty/bioassays, sam	pling, QA/QC, populatio	on/community
A batmo at				

Abstract

This document is a compendium of 12 scientifically valid and accepted methods that can be used to assess sediment quality and predict ecological impacts. Although the methods described in this document are not suitable for meeting specific tests, criteria, and procedures required by certain regulations (e.g., risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act), they provide useful measures or predictors of overall ecological impacts in an area. The 12 methods were selected based on their utility for assessing whether and to what extend sediments are "contaminated" or have the potential to pose a threat to the environment. Each has been applied at various levels in the decision-making process in different types of environments (e.g., freshwater, marine) as described.

The information provided for each method includes the following:

- how each method is currently used or could be used
- a detailed description of the method, including types of data, equipment, and sampling procedures needed
- the applicability of the method to the protection of wildlife and humans
- the utility of the method to produce numeric sediment quality criteria
- · the method's applicability to making different types of sediment management decisions
- the method's advantages, limitations, costs, level of acceptance, and accuracy
- the degree to which the method is actually being used now
- how well it is validated
- its potential uses

An extensive list of references and the names, addresses, and telephone numbers for the authors of each description are provided. Although a detailed description of each method is provided, consultation of these references and/or additional follow-up with the authors is recommended before applying any of the methods.

[extracted from document]

Contact: (202) 260-7786

- 1 INTRODUCTION
- 2 QUALITY ASSURANCE/QUALITY CONTROL, SAMPLING, AND ANALYTICAL CONSIDERATIONS
- 3 BULK SEDIMENT TOXICITY TEST APPROACH
- 4 SPIKED-SEDIMENT TOXICITY TEST APPROACH
- 5 INTERSTITIAL WATER TOXICITY IDENTIFICATION EVALUATION APPROACH
- 6 EQUILIBRIUM PARTITIONING APPROACH
- 7 TISSUE RESIDUE APPROACH
- 8 FRESHWATER BENTHIC MACROINVERTEBRATE COMMUNITY STRUCTURE AND FUNCTION
- 9 MARINE BENTHIC COMMUNITY STRUCTURE ASSESSMENT
- 10 SEDIMENT QUALITY TRIAD APPROACH
- 11 APPARENT EFFECTS THRESHOLD APPROACH
- 12 A SUMMARY OF THE SEDIMENT ASSESSMENT STRATEGY RECOMMENDED BY THE INTERNATIONAL JOINT COMMISSION
- 13 SUMMARY OF SEDIMENT-TESTING APPROACH USED FOR OCEAN DISPOSAL
- 14 NATIONAL STATUS AND TRENDS PROGRAM

U.S. EPA. 1992. Standard Operating Procedures and Field Methods Used for Conducting Ecological Risk Assessment Case Studies. Prepared for Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San Diego, CA, by U.S. Environmental Protection Agency, Environmental Research Laboratory, Narragansett, RI. Technical Document 2296. pp. 416 + appendices.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, sampling, OA/OC, grain size, total solids, pH, organics, inorganics, pesticides, nutrients, metals, PCBs, organotin, toxicity/bioassays, bioaccumulation, pathogenic organisms, tissue analysis, population/community, chlorophyll

Abstract

The emphasis on determining the ecological impacts of hazardous substances on coastal and estuarine ecosystems requires the use of appropriate methods and procedures to obtain accurate and comparable data. The methods and procedures presented in this document have been field-tested during research and monitoring activities performed to support ecological risk assessment case studies. The case studies were developed as part of an interagency Memorandum of Agreement between the U.S. Navy Naval Command, Control and Ocean Surveillance Center (NCCOSC) Research, Development, Test, and Evaluation Division (NRaD), San Diego, CA, and the U.S. Environmental Protection Agency (EPA) Environmental Research Laboratory Narragansett (ERL-N), Narragansett, RI. The case studies included a marine ecological risk assessment pilot study for Naval Construction Battalion Center, Davisville, RI, and an estuarine ecological risk assessment for Naval Shipyard Portsmouth, Kittery, ME.

The methods and standard operating procedures (SOPs) documented in this report were prepared by investigators at ERL-N, University of New Hampshire Jackson Estuarine Laboratory (UNH, JEL), and the Marine Environmental Support Office (MESO) of NCCOSC NRaD who were involved in particular aspects of the case studies. The methods were applied within an ecological risk assessment framework to evaluate their applicability to characterize ecological risk. This document has been prepared to fully document the procedures used in the case studies and to assist in the development of suitable techniques capable of achieving the objectives of ecological monitoring and assessment activities. As more information is developed, these procedures will provide a basis for improving and expanding the capabilities needed to accurately assess ecological risk.

This document has been organized into three sections. Section 1 consists of SOPs for general laboratory and field methods, and chemistry methods. General laboratory and field methods includes procedures for collecting and preparing samples, measuring sediments and water column attributes, culturing test organisms, and conducting bioassays. The chemistry methods provides procedures for the analysis of trace levels contaminants (subparts per billion range for some organic compounds and subparts per million range for metals) suitable for a wide range of environmental assessment activities. Specific SOPs are provided for sample collection and storage, preparation for organic and trace metal analysis, analysis of samples by a variety of instrumentation, and instrument maintenance. Procedures for generic activities, such as sampling plan development and data management, currently are not incorporated in this manual.

Section 2 provides procedures used for sampling and analysis of estuarine habitats. Section 3, documents procedures for sampling and analysis of ultratrace levels of organotin compounds in seawater, sediment, and tissue samples. Appendix A provides results of organotin analysis optimization techniques to obtain

082

subpart per trillion detection levels in seawater and part per billion detection levels in tissues and sediments. Appendix B contains a detailed description of analytical procedures for extracting organotin compounds from soft tissues of marine organisms. A complete guidance document for conducting field and laboratory quality assurance and quality control (QA/QC) protocols, criteria, and corrective action for the Estuarine Ecological Risk Assessment for Naval Shipyard Portsmouth is included in Appendix C.

This SOP manual will be maintained as a "living document." Individual descriptions will be updated in a continuous fashion as advances in scientific understanding of biological, chemical, and physical processes are incorporated into assessment procedures. Major procedural changes that potentially invalidate previous SOP approaches will be noted where appropriate. Additionally, new SOPs will be incorporated into the manual as they are finalized. Updated versions of specific SOPs may be obtained by contacting the Technical Information Manager of the developing laboratory. The contact person for each of these SOPs was responsible for developing or applying the method to the project, and has developed a QA/QC protocol, available upon request. The contact person is also available to answer specific questions regarding the SOPs.

[extracted from document]

Contact: (401) 782-3000

1	ERL-N SOPS	METHOD NO.
	Standard Operating Procedure Clean Room	EDI NOCE / 2/22/
	Maintenance Standard Operating Procedure Histological Preparation	ERL-N SOP 1.01.001
	for Shellfish and Fish	ERL-N SOP1.01.002
	Standard Operating Procedure Culturing Cyprinodon variegatus, Meniddia beryllina, Mysidopsis bahia, and Arbacia punctulata	ERL-N SOP1.01.003
	Standard Operating Procedure Preparation of Hypersaline Brine from Natural Seawater	ERL-N SOP 1.01.004
	Standard Operating Procedure Sediment Grain Size Analysis	ERL-N SOP 1.01.005
	Standard Operating Procedure General Data Entry	ERL-N SOP 1.01.006
	Standard Operating Procedure Cell Subculture Methods	ERL-N SOP 1.01.007
	Standard Operating Procedure Benthic Organism Collection	ERL-N SOP 1.02.001
	Standard Operating Procedure Caged Bivalve Deployment	ERL-N SOP 1.02.002
	Standard Operating Procedure Mysid Cage Construction	1.02.002
	and Field Deployment	ERL-N SOP 1.02.003
	Standard Operating Procedure Suspended Solids Determination in Water Samples	ERL-N SOP 1.02.004
•	Standard Operating Procedure Water Column Salinity, Conductivity, Temperature, and Dissolved Oxygen Determination	ERL-N SOP 1.02.005
	Standard Operating Procedure <i>Champia parvula</i> Sexual Reproduction Test	ERL-N SOP 1.03.001
	Standard Operating Procedure Conducting Acute Toxicity Tests Using Ampelisca abdita	ERL-N SOP 1.03.002
	Standard Operating Procedure Conducting Acute Toxicity Tests Using <i>McCyprinodon variegatus</i> , and <i>Menidia</i>	
	beryllina	ERL-N SOP 1.03.003
	Standard Operating Procedure Conducting the Inland Silverside (Menidia beryllina) and Sheepshed Minnow (Cyprinodon variegatus) Larvae Survival and Growth	
	Tests	ERL-N SOP 1.03.004
	Standard Operating Procedure Conducting the <i>Mysidopsis</i> bahia Survival, Growth, and Fecundity Test	ERL-N SOP1.03.005
	Standard Operating Procedure Conducting the Sea Urchin, <i>Arbacia punctulate</i> , Fertilization Test	ERL-N SOP 1.03.006
	Standard Operating Procedure Conducting the Sea Urchin Larval Development Test	ERL-N SOP 1.03.007
	Standard Operating Procedure Coot Clam (Mulinia lateralis) Embryo/Larval Toxicity Test	ERL-N SOP 1.03.008
	Standard Operating Procedure Microtox	ERL-N SOP 1.03.009

Standard Operating Procedure Performing the Phagocytic Index and Killing Ability Assay	ERL-N SOP 1.03.010
Standard Operating Procedure Solid Phase Bioaccumulato Testing	n ERL-N SOP 1.03.011
Standard Operating Procedure V79/Sister Chromatid Exchange Assay	ERL-N SOP 1.03.012
Standard Operating Procedure Growth and Scope for Growth Measurements with <i>Mytilus edulis</i>	ERL-N SOP 1.03.013
Standard Operating Procedure Membrane Filtration Method for the Enumeration of <i>Clostridium perfringens</i> in Marine Waters	ERL-N SOP 1.03.014
Standard Operating Procedure Membrane Filtration Method for the Enumeration of Fecal Coliforms and Escherichia coli in Marine Waters	ERL-N SOP 1.03.015
Standard Operating Procedure Most Probable Number Method for the Enumeration of Clostridium perfringens in Marine Waters	ERL-N SOP 1.03.017
Standard Operating Procedure Most Probable Number Method for the Enumeration of Entercocci in Marine Waters	ERL-N SOP 1.03.018
Standard Operating Procedure Most Probable Number Method for the Enumeration of Fecal Coliforms and Escherichia coli in Marine Waters	ERL-N SOP 1.03.019
Standard Operating Procedure Measurement of the Ecological Effects, Fate, and Transport of Chemicals in a Site-Specific Experimental Marine Microcosm	ERL-N SOP 1.03.020
Standard Operating Procedure ETC Biological Test Procedures for <i>Ampelisca abdita</i>	ERL-N SOP 1.03.21
Standard Operating Procedure Cleaning of Equipment for Trace Metal Analysis	ERL-N SOP 2.01.001
Standard Operating Procedure Field Use of the High Volume Seawater Sampling Apparatus for Organics Analysis	ERL-N SOP 2.01.002
Standard Operating Procedure Subtidal Sediment Chemistry Sampling	ERL-N SOP 2.02.002
Standard Operating Procedure Extraction of Filter Samples for PCBs	ERL-N SOP 2.03.001
Standard Operating Procedure Extraction of Sediment Samples for PCBs	ERL-N SOP 2.03.002
Standard Operating Procedure Extraction of Tissue Samples	ERL-N SOP 2.03.003
Standard Operating Procedure Extraction of Water Samples for PCBs	ERL-N SOP 2.03.004
Standard Operating Procedure Column Chromatography of Semivolatile Organic Analytes	ERL-N SOP 2.03.005
Standard Operating Procedure Digestion of Organism Samples for Trace Metal Analysis	ERL-N SOP 2.03.006
Standard Operating Procedure Microwave Digestion of Organism Samples for Inorganic Analysis	ERL-N SOP 2.03.007

;	Standard Operating Procedure Preparation of Water Samples for Direct Determination of Trace Metals	ERL-N	SOP	2.03.008	,
;	Standard Operating Procedure Extraction of Seawater Samples for Organic Analysis	ERL-N	SOP	2.03.009	,
;	Standard Operating Procedure Sediment Extraction for Semivolatile Organic Analytes	ERL-N	SOP	2.03.010	,
;	Standard Operating Procedure Tissue Extraction for Semivolatile Organic Analytes	ERL-N	SOP	2.03.011	
į	Standard Operating Procedure Total Microwave Digestion of Sediment Samples for Inorganic Analysis	ERL-N	SOP	2.03.012)
;	Standard Operating Procedure Ultrasonic Extraction of Sediment Samples for Inorganic Analysis	ERL-N	SOP	2.03.013	}
	Standard Operating Procedure Analysis of Dissolved PCBs Using Foam Plugs	ERL-N	SOP	2.04.001	
	Standard Operating Procedure Gas Chromatography- Mass Spectrometry	ERL-N	SOP	2.04.002	<u>,</u>
	Standard Operating Procedure Gas Chromatography	ERL-N	SOP	2.04.003	3
	Standard Operating Procedure Inorganic Analysis by Flame Atomic Absorption Spectrophotometry	ERL-N	SOP	2.04.004	Ļ
	Standard Operating Procedure Inorganic Analysis by ICP	ERL-N	SOP	2.04.005	;
	Standard Operating Procedure Instrumental Operating Conditions for Inorganic Analysis	ERL-N	SOP	2.04.006	3
	Standard Operating Procedure Dichlovos Monitoring	ERL-N	SOP	2.05.001	
	Standard Operating Procedure Propoxur Monitoring	ERL-N	SOP	2.05.002	2
	Standard Operating Procedure Carbaryl Monitoring	ERL-N	SOP	2.05.003	3
UN	NH SOPs				
	Standard Operating Procedure Eelgrass (Zostera marina) Collection and Population Characteristics		JEL S	SOP 1.01]
	Standard Operating Procedure Eelgrass (Zostera marina) Carbon, Nitrogen, and Phosphorus		JEL S	SOP 1.02	2
	Standard Operating Procedure Seaweed Collection and Population Characteristics		JEL S	SOP 1.03	3
	Standard Operating Procedure Blue Mussel (Mytilus edulis, Collection and Population Characteristics)	JEL S	SOP 1.04	1
	Standard Operating Procedure Water Sampling for Suspended Solids Chlorophyll, pH and Nutrients		JEL S	SOP 1.05	5
	Standard Operating Procedure Water Sample Filtration and Analysis of Total Suspended Solids, Chlorophyll, and Phaeopigments	l	JEL S	SOP 1.06	3
	Standard Operating Procedure Analysis of Seawater Samp for Ammonium (NH ₄ +) Using Wet Chemistry Procedure		JEL	SOP 1.07	7
	Standard Operating Procedure Analysis of Seawater Samp for Phosphate (PO ₄ ³⁻) Using Wet Chemistry Procedure		JEL :	SOP 1.08	3
	Standard Operating Procedure Most Probable Number Met for the Enumeration of <i>Clostridium perfringens</i> in Marine Sediments		.11=1 :	SOP 1.09	9
	Countriotics		~ 		_

	Standard Operating Procedure Sediment Coring, Core Extrusion and Subsampling	JEL SOP 1.10	
	Standard Operating Procedure Sediment Textural Analysis	JEL SOP 1.11	
	Standard Operating Procedure Analysis of Seawater Samples for Nitrate and Nitrite (NO ₃ , NO ₂) Using an Automated Procedure	JEL SOP 1.12	
	Standard Operating Procedure Winter Flounder (<i>Pleuronectes</i> americanus) and Lobster (<i>Homarus americanus</i>) Collection for Chemical Analysis	JEL SOP 1.13	
	Standard Operating Procedure Collection of Sediment Samples for Chemical and Toxicological Analyses, and Characterization of Benthos	JEL SOP 1.14	
	Standard Operating Procedure Sorting and Identification of Benthic Invertebrates	JEL SOP 1.15	
3	MESO SOP		
	Standard Operating Procedure Analysis of Organotin Compounds in Water, Sediment, and Tissue	MESO SOP 2/92	
APPENDIX A:	OPTIMITIZATION OF BUTYLTIN MEASUREMENTS FOR SEAWAT TISSUE, AND MARINE SAMPLES	ER,	
APPENDIX B:	ANALYTICAL PROCEDURES FOR EXTRACTABLE ORGANOTINS IN SOFT TISSUES OF MARINE ORGANISMS		
APPENDIX C:	ANALYTICAL CHEMISTRY QUALITY ASSURANCE AND QUALITY CONTROL PROTOCOLS, CRITERIA, AND CORRECTIVE ACTION THE ESTUARINE ECOLOGICAL RISK ASSESSMENT AT NAVAL SHIPYARD PORTSMOUTH, KITTERY, ME		

Reference No.: 083

U.S. EPA. 1992. Synthesis of Methods to Predict Bioaccumulation of Sediment Pollutants. Research Report. U.S. Environmental Protection Agency, Bioaccumulation/Stratozone Team, Pacific Ecosystems Branch, Environmental Research Laboratory, Newport, OR.

✓ Biota ✓ Sediment Water Media in which methods can be used:

Sediment quality, bioaccumulation, sampling, data analysis, QA/QC **Keywords:**

Abstract

This document is designed to be an aid in choosing the most appropriate test or model for assessing or predicting bioaccumulation of sediment-associated pollutants. With one exception, the methods are limited to bedded (whole) rather than resuspended sediments. The techniques are evaluated solely in terms of uptake by sediment-dwelling (i.e., infaunal) invertebrates rather than by epifaunal invertebrates (e.g., mussels, oysters) or fish. Although focused on marine and estuarine organisms, the techniques should be generally applicable to freshwater environments.

A questionnaire section directs the reader to sections which describe a specific direct measurement technique (laboratory test or field survey) or model that best fits the available data and goals of the project. These sections introduce the model or direct measurement method, describe its use and limitations, identify the sampling requirements for the direct methods, and direct the reader to references where the technique is described in greater detail.

For bioaccumulation models, two toxicokinetic (bioenergetics based and a first-order kinetic) and two equilibrium partition models (bioaccumulation factor and equilibrium partitioning or AF) are discussed. Where possible, tables of model input parameters and reference values are provided.

For direct measurements of bioaccumulation, several laboratory tests are presented as well as the alternative of assessing bioaccumulation from field collected organisms. The laboratory tests described range from a simple 28-day exposure to tests which use time-series sampling during uptake and depuration phases to determine input parameters for the first-order kinetic model. An appendix is provided which contains information that is generic to any laboratory bioaccumulation test, such as species selection and exposure systems.

This report in no way supersedes or takes the place of any guidance or requirements set forth in any regulatory document by any agency. [copied from document]

Contact: (303) 867-5000

1 INTRODUCTION

Background

How to Use This Guide

Document Limitations

Summary of Methods to Assess Bioaccumulation

Direct Measurements

Models

Method Applicability

Key Decisions in Choosing a Bioaccumulation Approach

2 GUIDE TO METHODS FOR ASSESSING BIOACCUMULATION

Instructions

Questionnaire

Model Questions

Laboratory or Field Test Questions

3 BIOACCUMULATION FACTOR MODEL

Model Description

Data Needs

Errors Associated with BAF's

4 EQUILIBRIUM PARTITIONING BIOACCUMULATION MODEL

Model Description

Data Needs

Errors Associated with Accumulation Factors

5 BIOGNERGETICS-BASED TOXICOKINETIC BIOACCUMULATION MODEL

Model

Model Description

Data Needs

Errors Associated with Bioenergetics-Based Model

6 FIRST-ORDER KINETIC MODEL

Model Description

Data Needs

Errors Associated with First-Order Kinetic Model

k, k, and C

Growth Dilution

7 LONG-TERM BIOACCUMULATION TEST

Test Description

Sampling

Biotic Samples

Abiotic Samples

Data Interpretation

8 28-DAY BIOACCUMULATION TEST

Test Description

Sampling

Data Interpretation

9 UPTAKE AND DEPURATION LABORATORY TEST

Test Description

Sampling

10 UPTAKE ONLY LABORATORY TEST

Test Description

Sampling

Data Interpretation

11 FIELD SAMPLES FOR ASSESSING BIOACCUMULATION

Background

Sampling

Biotic Samples

Abiotic Samples

Data Interpretation

APPENDIX A: GENERIC CONSIDERATIONS FOR BIOACCUMULATION TESTS

Background

Species Selection

Sediments

Exposure Systems and Facilities

Compositing

Pollutant Analysis

Replication and Power of Tests

Reference and Control Sediments

GLOSSARY

REFERENCES

	•		
		Ī	
		1	
		,	
			· ·
		1	
		1	
		1	
		•	

Reference No.: 084

U.S. EPA. 1993. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water, Washington, DC. EPA 823-R-93-002. (NTIS: PB93-237899).
Media in which methods can be used: ☐ Water ☐ Sediment ☑ Biota
Keywords: Biological characterization, sampling, QA/QC, metals, pesticides, PAHs, PCBs, inorganics, organics, tissue analysis, data analysis/management

Abstract

This manual is intended to describe what the EPA Office of Water believes to be scientifically sound methods for sample collection, chemical analyses, and statistical analyses of fish and shellfish tissue contaminant data for use in fish contaminant monitoring programs that have as their objective the protection of public health.

The purpose of this manual is to provide overall guidance to States on methods for sampling and analyzing contaminants in fish and shellfish tissue that will promote consistency in the data States use to determine the need for fish consumption advisories. This manual provides guidance only and does not constitute a regulatory requirement for the States.

This technical guidance manual is intended for use as a handbook by the State and local agencies that are responsible for sampling and analyzing fish and shellfish tissue. Adherence to this guidance will enhance the comparability of fish and shellfish contaminant data, especially in interstate waters, and thus provide more standardized information of fish contamination problems.

This manual is the first in a series of four documents to be prepared by the EPA Office of Water as part of a Federal Assistance Plan to help States standardize fish consumption advisories. The remaining three documents will provide guidance on risk assessment, risk management, and risk communication.

This sampling and analysis manual is not intended to be an exhaustive guide to all aspects of sampling, statistical design, development of risk-based screening values, laboratory analyses, and QA/QC considerations for fish and shellfish contaminant monitoring programs. Key references are provided that detail various aspects of these topics. In addition, States may obtain a list of related documents relevant to fish and shellfish contamination monitoring by accessing the EPA Nonpoint Source Bulletin Board System (NPS BBS). The phone number of the BBS is (301) 589-0205.

Monitoring Strategy: Section 2 outlines the recommended strategy for State fish and shellfish contaminant monitoring programs. This strategy is designed to (1) routinely screen waterbodies to identify those locations where chemical contaminants in edible portions of fish and shellfish exceed human health screening values and (2) sample more intensively those waterbodies where exceedances of these SVs have been found in order to assess the magnitude and the geographic extent of the contamination.

Target Species: Section 3 discusses the purpose of using target species and criteria for selection of target species for both screening and intensive studies. Lists of recommended target species are provided for inland freshwaters, Great Lakes waters, and seven distinct estuarine and coastal marine regions of the United States.

084

Target Analytes: Section 4 presents a list of recommended target analytes to be considered for inclusion in screening studies and discuss criteria used in selecting these analytes.

Screening Values: Section 5 describes the EPA risk-based procedure for calculating screening values for target analytes.

Field Procedures: Section 6 recommends field procedures to be followed from the time fish or shellfish samples are collected until they are delivered to the laboratory for processing and analysis. Guidance is provided on site selection and sample collection procedures; the guidance addresses material and equipment requirements, time of sampling, size of animals to be collected, sample type, and number of samples. Sample identification, handling, preservation, shipping, and storage procedures are also described.

Laboratory Procedures: Section 7 described recommended laboratory procedures for sample handling including: sample measurements, sample processing procedures, and sample preservation and storage procedures. Section 8 presents recommended laboratory procedures for sample analyses, including cost-effective analytical methods and associated QC procedures, and information of sources of certified reference materials and Federal agencies currently conducting interlaboratory comparison programs.

Data Analysis and Reporting: Section 9 includes procedures for data analysis to determine the need for additional monitoring and risk assessment and for data reporting. This section also described the National Fish Tissue Data Repository (NFTDR), a national database of fish and shellfish contamination monitoring data.

[extracted from document]

Contact: (202) 260-7786

1 INTRODUCTION

Historical Perspective

Purpose

Objectives

Relationship of Manual to Other Guidance Documents

Organization of this Manual

2 MONITORING STRATEGY

Screening Studies (Tier 1)

Intensive Studies (Tier 2)

3 TARGET SPECIES

Purpose of Using Target Species

Criteria for Selecting Target Species

Freshwater Target Species

Bottom-Feeding Target Species

Predator Target Species

Estuarine/Marine Target Species

Selection of Target Shellfish Species

Selection of Target Finfish Species

4 TARGET ANALYTES

Recommended Target Analytes

Selection of Target Analytes

Target Analytes Profiles

Metals

Organochlorine Pesticides

Organophosphate Pesticides

Chlorophenoxy Herbicides

Polychlorinated Biphenyls (Total)

Dioxins and Dibenzofurans

Target Analytes Under Evaluation

Metals

Organics

5 SCREENING VALUES FOR TARGET ANALYTES

General Equations for Calculating Screening Values

Noncarcinogens

Carcinogens

Recommended Values for Variables in Screening Value Equations

Recommended Screening Values for Target Analytes

Comparison of Target Analytes Concentrations with Screening Values Metals

Organics

6 FIELD PROCEDURES

Sampling Design

Screening Studies (Tier 1)

Intensive Studies (Tier 2)

Sample Collection

Sampling Equipment and Use

Preservation of Sample Integrity

Field Recordkeeping

Sample Handling

Sample Selection

Sample Packaging

Sample Preservation

Sample Shipping

7 LABORATORY PROCEDURES I - SAMPLE HANDLING

Sample Receipt and Chain-of-Custody

Sample Processing

General Considerations

Processing Fish Samples

Processing Shellfish Samples

Sample Distribution

Preparing Sample Aliquots

Sample Transfer

8 LABORATORY PROCEDURES II - SAMPLE ANALYSES

Recommended Analytes

Target Analytes

Lipid

Analytical Methods

Lipid Method

Target Analyte Methods

Quality Assurance and Quality Control Considerations

QA Plans

Method Documentation

Minimum QA and QC Requirements for Sample Analyses

Documentation and Reporting of Data

Analytical Data Reports

Summary Reports

9 DATA ANALYSIS AND REPORTING

Data Analysis

Screening Studies

Intensive Studies

Data Reporting

State Data Reports

Reports to the National Fish Tissue Data Repository

10 LITERATURE CITED

APPENDIX A: FISH AND SHELLFISH SPECIES FOR WHICH STATE CONSUMPTION

ADVISORIES HAVE BEEN ISSUED

APPENDIX B: TARGET ANALYTES ANALYZED IN NATIONAL OR REGIONAL MONITORING

PROGRAMS

APPENDIX C: PESTICIDES AND HERBICIDES RECOMMENDED AS TARGET ANALYTES

APPENDIX D: TARGET ANALYTE DOSE-RESPONSE VARIABLES AND ASSOCIATED

INFORMATION

APPENDIX E: QUALITY ASSURANCE AND QUALITY CONTROL GUIDANCE

APPENDIX F: RECOMMENDED PROCEDURES FOR PREPARING WHOLE FISH COMPOSITE

HOMOGENATE SAMPLES

APPENDIX G: GENERAL PROCEDURES FOR REMOVING EDIBLE TISSUES FROM

SHELLFISH

APPENDIX H: COMPARISON OF TARGET ANALYTE SCREENING VALUES (SVS) WITH

DETECTION AND QUANTITATION LIMITS OF CURRENT ANALYTICAL

METHODS

APPENDIX I: SOURCES OF RECOMMENDED REFERENCE MATERIALS AND STANDARDS

		1	
			ζ
			·
		i ·	,
		:	·
		:	
		•	
	r - 1	!	

U.S. EPA. 1993. Laboratory Methods Manual - Estuaries. Environmental Monitoring and Assessment Program. U. S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. pp. 289. EPA/600/4-91/024.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, toxicity/bioassays, inorganics, metals, tissue analysis, organics, grain size, total solids, population/ community, pesticides, PAHs, PCBs, organotin, total organic carbon

Abstract

This EMAP program is designed to monitor a defined set of parameters (i.e., indicators of estuarine and coastal environmental quality) on a regional scale, over a period of decades, using standardized field sampling and laboratory methods with a probability-based sampling design. A defined set of parameters that serve as indicators of environmental quality are addressed. Categories of indicators identified and sampled are as follows:

- Response indicators Measurements that quantify the integrated response of ecological resources to individual or multiple stressors. Included are benthic species composition, abundance and biomass; gross pathology of fish; fish species composition and abundance; relative abundance of large burrowing bivalves; and histopathology of fish.
- Exposure indicators Physical, chemical, and biological measurements that quantify pollutant exposure, habitat degradation, or other causes of degraded ecological condition. Included are sediment contaminant concentration; sediment toxicity; contaminants in fish flesh; contaminants in large bivalves; and continuous and point measurements of dissolved oxygen concentration.
- Habitat indicators Physical, chemical, and biological measurements that provide basic information about the natural environmental setting. Included are sediment characteristics: water salinity, temperature pH, depth, and clarity; chlorophyll-a fluorescence and the amount of photosynthetically active radiation (PAR) in the water column.

Recommended protocols for those indicator parameters that are measured in the laboratory are presented in this document. These include methods of laboratory analyses of selected inorganic and organic parameters, tissue analyses, sediment toxicity testing methods, sediment composition, and grain size determinations. Histopathological procedures and macrobenthic community assessment protocols are also discussed. Protocols for indicator parameters collected or measured in the field are contained in EMAP-NC Field Operations Manuals (Macauley, 1991; Strobel and Schimmel, 1991). [extracted from document]

Contact: (513) 569-7301

1 EMAP-ESTUARIES

Introduction

2 INORGANIC CHEMISTRY METHODS

Introduction

Sample Preparation Procedure for Spectrochemical Analyses of Total Recoverable Elements in Biological Tissues

Determination of Metals and Trace Elements by Inductively Couple Plasma - Atomic Emission Spectrometry

Determination of Mercury in Sediments by Cold Vapor Atomic Absorption Spectrometry

Determination of Mercury in Tissues by Cold Vapor Atomic Absorption Spectrometry

Determination of Acid-Volatile Sulfides in Sediments Using Sulfide-Specific Electrode Detection

Microwave Digestion Procedure for Metals in Sediments

3 ORGANIC CHEMISTRY METHODS

Introduction

Determination of Chlorinated Pesticides, Polycyclic Aromatic Hydrocarbons, and Selected Polychlorinated Biphenyl Congeners in Sediments

Determination of Butyltin Compounds in Sediments

Method for the Determination of Total Organic and Inorganic Carbon (Wet Oxidation)

Residue, Non-Filterable (Suspended Solids)

- 4 LABORATORY METHODS FOR FILLETING AND COMPOSITING FISH FOR ORGANIC AND INORGANC CONTAMINANT ANALYSES
- 5 SEDIMENT TOXICITY TEST METHODS
- 6 SEDIMENT SILT-CLAY CONTENT AND GRAIN SIZE DISTRIBUTION LABORATORY PROCEDURES
- 7 BENTHIC MACROINVERTEBRATE METHODS MACROBENTHIC COMMUNITY ASSESSMENT
- 8 HISTOPATHOLOGY

Suborganismal Bioindicators

Aromatic Hydrocarbon Metabolites in Bile .

Bioindicators - Blood Chemisry Profiles and Hematology Studies

U.S. EPA. 1993. Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA/600/R-92/080. (NTIS: PB94-114907).

Media in which methods can be used:	[
-------------------------------------	---

✓ Water

Sediment

Biota

Keywords:

Water quality, organics, metals, toxicity

Abstract

This document is one in a series of guidance documents intended to assist dischargers and their consultants in conducting acute or chronic aquatic toxicity identification evaluations (TIEs). TIEs might be required by state or federal agencies resulting from an enforcement action or as a condition of a National Pollutant Discharge Elimination System (NPDES) permit. The TIE approach is applicable to effluents, ambient waters, sediment pore waters or elutriates, and hazardous waste leachates. The methods described in this document will also help to determine the adequacy of effluent TIEs when they are conducted as part of a toxicity reduction evaluation (TRE).

This Phase II document is the second of a three phase series of documents that provide methods to characterize and identify the cause of toxicity in effluents. The first phase of the series, Phase I, characterized the physical/chemical nature of the acute and chronic toxicant(s), thereby simplifying the analytical work needed to identify the toxicant(s). Phase II provides guidance to identify the suspect toxicants, and the last phase, Phase III provides methods to confirm that the suspect toxicants are indeed the cause of toxicity. These recent TIE documents have been produced or revised to include chronic toxicity recommendations and additional information or experiences we have gained since the original methods were printed.

This Phase II document provides identification schemes for non-polar organic chemicals, ammonia, metals, chlorine, and surfactants that cause either acute or chronic toxicity. The document is still incomplete in that it does not provide methods to identify all toxicants, such as polar organic compounds. This Phase II manual also incorporates chronic and acute toxicity identification techniques into one document.

While the TIE approach was originally developed for effluents, the methods and techniques directly apply to other types of aqueous samples, such as ambient waters, sediment pore waters, sediment elutriates, and hazardous waste leachates. These methods are not mandatory protocols but should be used as general guidance for conducting TIEs.

The sections of both Phase I documents which address health and safety, quality assurance/quality control (QA/QC), facilities and equipment, dilution water, testing, sampling, and parts of the introduction are applicable to Phase II. These sections, however, are not repeated in their entirety in this document. [copied from document]

Contact: (513) 569-7562

1 INTRODUCTION

General Overview

2 NON-POLAR ORGANIC COMPOUNDS

General Overview

Acute Toxicity: Fractionation and Toxicity Testing Procedures

Sample Volume

Filtration

Column Size

C₁₈ SPE Column Conditioning

Elution Blanks

Column Loading with Effluent

C₁₈ SPE Column Elution

Blank & Effluent Fraction Toxicity Tests

APE Fractions: Concentration and Subsequent Toxicity Testing

HPLC Separation

HPLC Fraction Toxicity Tests

HPLC Fraction: Concentration and Subsequent Toxicity Testing Chronic Toxicity: Fractionation and Toxicity Testing Procedures

Sample Volume

Filtration

Column Size

C₁₈ SPE Column Conditioning

Elution Blanks

Column Loading with Effluent

C₁₈ SPE Column Elution

Blank & Effluent Fraction Toxicity Tests

APE Fractions: Concentration and Subsequent Toxicity Testing

HPLC Separation

HPLC Fraction Toxicity Tests

HPLC Fraction: Concentration and Subsequent Toxicity Testing

GC/MS Analyses

Identifying Suspected Toxicants

Identifying Organophosphase Pesticides

Identifying Surfactants

Alternate Fractionation Procedures

Modified Elution Method

Solvent Exchange

Alternative SPE Sorbents and Techniques

3 AMMONIA

General Overview

Toxicity Testing Concerns

Measuring Ammonia Concentration

Graduated pH Test

pH Control: Acid/Base Adjustments

pH Control: CO, Adjustments

pH Control: Buffer pH Adjustments

Zeolite Resin Test

Air-Stripping of Ammonia

4 METALS

General Overview

Analysis of Metals

Prioritizing Metals for Analysis

Metal Analysis Methods

Metal Speciation

Identification of Suspect Metal Toxicants

Additional Toxicity Testing Methods

EDTA Addition Test

Sodium Thiosulfate Addition Test

Metal Toxicity Changes with pH

Ion-Exchange Test

5 CHLORINE

General Overview

Tracking Toxicity and TRC Levels

6 IDENTIFYING TOXICANTS REMOVED BY FILTRATION

General Overview

Filter Extraction

7 REFERENCES

8 APPENDIX A

		•
		•
		T.
	•	
	•	:
		:
		!
	•	
,		
•		
		•
		· ·

U.S. EPA. 1993. Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA/600/R-92/081. (NTIS: PB84-123833).

Media in which methods can be used:

✓ Water

Sediment

✔ Biota

Keywords:

Water quality, toxicity/bioassays, QA/QC

Abstract

This Phase III document is the last in a series of guidance documents intended to aid discharges and their consultants in conducting aquatic organism toxicity identification evaluations (TIEs). TIEs might be required by state or federal agencies as the result of an enforcement action or as a condition of a National Pollutant Discharge Elimination System (NPDES) permit. These documents should aid individuals in overseeing and determining the adequacy of effluent TIEs as a part of toxicity reduction evaluations (TREs).

In this confirmation document, guidance is included when the treatability approach is taken. Use of the treatability approach required confirmation as much as or more than the toxicant identification approach (Phase II). The reader is encouraged to use both the acute Phase I characterization and the chronic Phase I characterization documents for details of quality assurance/quality control (QA/QC), health and safety, facilities and equipment, dilution water, sampling, and testing. The TIE methods are written as general guidance rather than rigid protocols for conducting TIEs and these methods should be applicable to other aqueous samples, such as ambient waters, sediment elutriate or pore waters, and leachates.

In 1989, the guidance document for acutely toxic effluents entitled Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures was published. This new Phase III manual and its companion documents are intended to provide guidance to aid dischargers in confirming the cause of toxicity in industrial and municipal effluents. The toxicity identification evaluation (TIE) starts with a characterization of the effluent toxicity using aquatic organisms to tract toxicity; this step is followed by identifying a suspect toxicant(s) and then confirming the suspect toxicant as the cause of toxicity.

This Phase III confirmation document provides greater detail and more insight into the procedures described in the acute Phase III confirmation document. Procedures to confirm that all toxicants have been correctly identified are given and specific changes for methods applicable to chronic toxicity are included. A difficult aspect of confirmation occurs when toxicants are not additive, and therefore the effects of effluent matrix affecting the toxicants are discussed. The same basic techniques (correlation, symptoms, relative species sensitivity, spiking, and mass balance) are still used to confirm toxicants and case examples are provided to illustrate some of the Phase III procedures. [copied from document]

Contact: (513) 569-7562

- 1 INTRODUCTION
- 2 CORRELATION APPROACH

Correlation
Correlation Problems Caused by Matrix Effects

- 3 SYMPTOM APPROACH
- 4 SPECIES SENSITIVITY APPROACH
- 5 SPIKING APPROACH
- 6 MASS BALANCE APPROACH
- 7 DELETION APPROACH
- 8 ADDITIONAL APPROACHES
- 9 HIDDEN TOXICANTS
- 10 CONCLUSIONS
- 11 WHEN THE TREATABILITY APPROACH HAS BEEN USED
- 12 REFERENCES

Reference No.: 088

U.S. EPA. 1993. Methods for the Determination of Inorganic Substances in Environmental Samples. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. EPA/600/R-93/100. (NTIS: PB94-120821).
Media in which methods can be used: Water Sediment Biota
Keywords: Water quality, sampling, turbidity, inorganics, nutrients, oxygen demand, data analysis

Abstract

This manual contains ten updated and revised automated, semi-automated or methods amenable to automation for the determination of a variety of inorganic substances in water and wastewater.

These methods include and address, in an expanded form, information concerning safety, quality control, pollution prevention, and waste management. Methods were selected which minimize the amount of hazardous reagents required and maximize sample throughput to allow expanded quality control.

Automated methods are included for nitrate-nitrate, phosphorus, and sulfate. Semi-automated methods cover cyanide, ammonia, total kjeldahl nitrogen (TKN), chemical oxygen demand (COD), and generic phenolics. Methods amenable to automation include turbidity and inorganic anions by ion chromatography.

[copied from document]

Contact (513) 589-7586

		METHOD NUMBER
1	INTRODUCTION	
2	DETERMINATION OF TURBIDITY BY NEPHELOMETRY (REV. 2.0)	180.1
3	DETERMINATION OF INORGANIC ANIONS BY ION CHROMATOGRAPHY (REV. 2.1)	300.0
4	DETERMINATION OF TOTAL CYANIDE BY SEMI-AUTOMATED COLORIMETRY (REV. 1.0)	335.4
5	DETERMINATION OF AMMONIA NITROGEN BY SEMI- AUTOMATED COLORIMETRY (REV. 2.0)	350.1
6	DETERMINATION OF TOTAL KJELDAHL NITROGEN BY SEMI-AUTOMATED COLORIMETRY (REV. 2.0)	351.2
7	DETERMINATION OF NITRATE-NITRITE BY AUTOMATED COLORIMETRY (REV. 2.0)	353.2
8	DETERMINATION OF PHOSPHORUS BY AUTOMATED COLORIMETRY (REV. 2.0)	365.1
9	DETERMINATION OF SULFATE BY AUTOMATED COLORIMETRY (REV. 2.0)	375.2
10	DETERMINATION OF CHEMICAL OXYGEN DEMAND BY SEMI-AUTOMATED COLORIMETRY (REV. 2.0)	410.4
11	DETERMINATION OF TOTAL RECOVERABLE PHENOLICS BY SEMI-AUTOMATED COLORIMETRY (REV. 1.0)	420.4

U.S. EPA. 1993. (In press.) QA/QC Document for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations Phase 1 - Chemical Evaluations. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Standards & Applied Science Division (WH-585), Washington, DC.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, QA/QC, sampling, data analysis/management,

tissue analysis

Abstract

This document provides programmatic and technical guidance on quality assurance and quality control (QA/QC) issues related to evaluations of impacts associated with the discharge of dredged materials into inland and ocean waters. This QA/QC document serves as a companion manual to the *Ocean Testing Manual* and the *Inland Testing Manual*, both developed jointly by EPA and USACE.

The purpose of this document is

- to provide guidance on the development of quality assurance project plans for ensuring the reliability of data gathered to evaluate dredged material proposed for discharge under the Clean Water Act and the Marine Protection, Research, and Sanctuaries Act
- to outline procedures to be followed when sampling and analyzing sediments, water, and tissue
- to provide recommended target detection limits (TDLs) for chemicals of concern

This Phase 1 document pertains largely to physical and chemical evaluations. Phase 2 of the QA/QC guidance, pertaining to biological evaluations, will be published in 1995. [extracted from document]

Contact: (202) 260-8085

1 INTRODUCTION

Government (Data User) Program
Contractor (Data Generator) Program

2 DRAFTING A QUALITY ASSURANCE PROJECT PLAN

Introductory Material

Quality Assurance Organization and Responsibilities

Staffing for Quality Assurance

Statements of Work

Laboratory Quality Assurance Responsibilities

Quality Assurance Objectives

Program vs. Project Objectives

Target Detection Limits for Chemicals

Standard Operating Procedures

Sampling Strategy and Procedures

Review of Dredging Plan

Site Background and Existing Database

Subdivision of Dredging Area

Sample Location and Collection Frequency

Sample Designation System

Sample Collection Methods

Sample Handling, Preservation, and Storage

Logistical Considerations and Safety Precautions

Sample Custody

Sample Custody and Documentation

Storage and Disposal of Samples

Calibration Procedures and Frequency

Calibration Frequency

Number of Calibration Standards

Calibration Acceptance Criteria

Analytical Procedures

Physical Analysis of Sediment

Chemical Analysis of Sediment

Chemical Analysis of Water

Chemical Analysis of Tissue

Data Screening, Validation, Reduction, and Reporting

Data Screening and Validation

Data Reduction and Reporting

Internal Quality Control Checks

Priority and Frequency of Quality Control Checks

Specifying Quality Control Limits

Quality Control Considerations for Physical Analysis of Sediments Quality Control Considerations for Chemical Analysis of Sediments Quality Control Considerations for Chemical Analysis of Water Quality Control Considerations for Chemical Analysis of Tissue Quality Control Considerations for Biological Analysis

Performance and System Audits

Procedures for Pre-Award Inspections of Laboratories Interlaboratory Comparisons Routine System Audits

Preventative Maintenance

Calculation of Data Quality Indicators

Corrective Actions

Quality Assurance Reports of Management

Preparing Basic Quality Assurance Reports

Preparing Detailed Quality Assurance Reports

References

- 3 REFERENCES
- 4 GLOSSARY
- APPENDIX A EXAMPLE QA/QC CHECKLISTS, FORMS, AND RECORDS
- APPENDIX B EXAMPLE STATEMENT OF WORK FOR THE LABORATORY
- APPENDIX C DESCRIPTION OF CALIBRATION, QUALITY CONTROL CHECKS, AND WIDELY USED ANALYTICAL METHODS
- APPENDIX D STANDARD OPERATING PROCEDURES
- APPENDIX E EPA PRIORITY POLLUTANTS AND ADDITIONAL HAZARDOUS SUBSTANCE LIST COMPOUNDS
- APPENDIX F EXAMPLE QUALITY ASSURANCE REPORTS
- APPENDIX G ANALYTICAL/ENVIRONMENTAL LABORATORY AUDIT STANDARD OPERATING PROCEDURES
- APPENDIX H FORMAT FOR SEDIMENT TESTING REPORT

Reference No.: 090

U.S. EPA. 1993. Volunteer Estuary Monitoring: A Methods Manual. U.S. Environmental Protection Agency, Office of Water, Office of Wetlands, Oceans, and Watersheds, Washington, DC. EPA 842-B-93-004.

Media in which methods can be used:

✓ Water

Sediment

✓ Biota

Keywords:

Water quality, biological characterization, dissolved oxygen, nutrients, chlorophyll, population community, pathogenic organisms, sampling, OA/OC, volunteer moni-

toring

Abstract

This manual compiles methodologies and techniques used in volunteer monitoring programs for estuarine waters. The manual describes specific techniques that managers can use to enhance existing programs or to launch a new volunteer monitoring program.

The focus of the manual is the identification of those water quality parameters that are most important in determining an estuary's water quality. The significance of each parameter and specific methods to monitor it are then detailed in a step-by-step fashion. Proper quality assurance and quality control are stressed to ensure that the data are useful to state agencies and other users.

Chapter 1 summarizes the process of planning and managing a volunteer monitoring program. Chapter 2 follows with a discussion of the particular problems that afflict the nation's estuaries. Chapter 3 describes those parameters that paint a broad-brush picture of an estuary's fundamental nature and outlines how to measure them. Chapters 4 through 7 take a detailed look at the most important parameters used in describing the water quality of an estuary: dissolved oxygen, nutrients and phytoplankton, submerged aquatic vegetation, and bacteria. Chapter 8 discusses the monitoring of marine debris, organizing a beach cleanup program, and collecting shellfish for toxic substance, bacteria, or paralytic shellfish poisoning analysis. Chapter 9 discusses the reasons for training volunteers and the steps necessary to ensure complete and interesting training sessions. Chapter 10 concludes the manual with a discussion of different data presentation techniques and the importance of credible data.

At the end of each chapter, references and materials from existing volunteer monitoring estuary programs are listed. These references should prove a valuable source of detailed information to anyone interested in establishing a new volunteer program or a background resource to those with already established programs.

[extracted from document]

Contact: (202) 260-9082

1 INTRODUCTION

Purpose of this Manual Manual Organization Planning an Estuarine Monitoring Program References

2 OUR TROUBLED ESTUARIES

What is an Estuary?
The Problems
Measures of Environmental Health and Degradation
References

3 SETTING THE STAGE

Characterizing the Estuarine Environment References

4 MONITORING DISSOLVED OXYGEN

The Importance of Dissolved Oxygen Sampling Considerations How to Monitor DO References

5 MONITORING NUTRIENTS AND PHYTOPLANKTON

The Importance of Nutrients
Why Measure Nutrients?
Nutrient Sample Considerations
Where to Sample in the Water Column
Returning to the Same Monitoring Site
How to Sample Nutrients
Phytoplankton
References

6 MONITORING SUBMERGED AQUATIC VEGETATION

The Role of Submerged Aquatic Vegetation
Common SAV Species
Monitoring Considerations
How to Monitor SAV Using the Groundtruthing Method
References

7 MONITORING BACTERIA

The Role of Bacteria

Bacterial Contamination
Why Monitor Bacteria?
Shellfish Monitoring for Bacteria
Bacteria Sampling Considerations
How to Measure Bacteria Levels
Biochemical Oxygen Demand
References

8 MONITORING OTHER ESTUARINE CONDITIONS

Monitoring Marine Debris Collecting Shellfish for Analysis References

9 TRAINING VOLUNTEERS

Why Train Volunteers
Creating a Task Description
Planning the Training
Presenting the Training
Evaluating the Training
Coaching/Providing Feedback
References

10 PRESENTING MONITORING RESULTS

Data Presentation Case Study References

APPENDIX A PREPARING A QAPJP

APPENDIX B SCIENTIFIC SUPPLY HOUSES

APPENDIX C HYDROMETER CONVERSION TABLE

Reference No.: 091

U.S. EPA. 1994. CWA Section 403: Procedural and Monitoring Guidance. U.S. Environmental Protection Agency, Office of Water; Office of Wetlands, Oceans, and Watersheds, Ocean and Coastal Protection Division, Washington, DC. EPA 842-B-94-003.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, currents, depth, grain size, salinity, turbidity, temperature, sampling, QA/QC, nutrients, metals, dissolved oxygen, chlorophyll, PAHs, PCBs, organics, population/community, bioaccumulation, pathogenic organisms

Abstract

The Clean Water Act (CWA, or the Act), Public Law 95-217, was enacted in 1972. The Act is the single most important and comprehensive piece of legislation dealing with the environmental quality of the Nation's waters, covering both marine and freshwater systems.

Section 402 of the CWA established the National Pollutant Discharge Elimination System (NPDES). This section of the Act requires that any direct discharger of pollutants to the surface waters of the United States obtain an NPDES permit before the discharge can take place. To obtain a NPDES permit, a discharger must demonstrate compliance with all applicable requirements of the Act. In the case of discharges to the territorial sea, the contiguous zone, or the ocean, these requirements include Section 403 of the Clean Water Act, which sets forth criteria to prevent unreasonable degradation of the marine environment and authorized imposition of any additional effluent limitations, including zero discharge, necessary to protect the receiving waters to attain the objectives of the Clean Water Act.

This document is designed to provide the EPA Regions and NPDES-authorized States with a framework for the decision-making process for Clean Waters Act Section 403 evaluations and to provide guidance on the type and level of monitoring that should be required as part of permit issuance under the "no irreparable harm" provisions of Section 403. (Generally, ambient monitoring is not required if a determination of "no unreasonable degradation" is made.) The decision-making aspects of the program, such as determination of information requirements and sufficiency of information, determination of no unreasonable degradation, and the decision to issue/reissue or deny a permit, are described. Options for monitoring under the basis of no irreparable harm, including criteria for evaluating perceived potential impact and establishing monitoring requirements to assess actual impacts, are discussed. Finally, summaries of monitoring methods for evaluating the following parameters are provided:

- physical characteristics, such as temperature, salinity, density, depth, turbidity, and current velocity and direction, to characterize the water column, to verify hydrodynamic models, and to indicate spatial and temporal variations
- · water chemistry to evaluate the quality of receiving waters
- sediment chemistry to determine pollutant levels in sediments
- sediment grain size to describe spatial and temporal changes in the benthic community
- benthic community structure to detect and describe spatial and temporal changes in community structure and function

091

- fish and shellfish pathobiology to provide information regarding damage or alteration to organ systems of fish and shellfish
- fish and shellfish populations to detect and describe spatial and temporal changes in the abundance, structure, and function of fish and shellfish communities
- plankton characteristics including biomass, productivity, and community structure and function, to identify the dominant species, detect short- and long-term spatial and temporal trends, and examine the relationship between water quality conditions and community characteristics
- habitat identification to determine whether pollutant-related damage will cause long-lasting harm to sensitive marine habitats
- bioaccumulation to provide the link between pollutant exposure and effects
- pathogens to assess water conditions in the vicinity of discharges and surrounding areas and to assess relative pathogen contributions from permitted effluent discharges
- effluent characterization to predict biological impacts of an effluent prior to discharge
- mesocosms and microcosms to assess ecological impacts from marine discharges

Each method section contains an explanation of why the measurement of the parameter of concern might be included as part of a 403 monitoring program, and a discussion of monitoring design considerations, analytical methods, statistical design considerations, the use of data generated, and quality assurance/ quality control considerations.

[extracted from document]

Contact (202) 260-6502

1 INTRODUCTION

The Ocean Discharge Criteria

Purpose of this Document

Document Format

2 SECTION 403 PROCEDURE

Background

The Role of the Ocean Discharge Criteria in NPDES Permit Issuance

Applicability of Section 403

Individual or General Permit

General Procedure

Request for Issuance/Reissuance of a Section 402 Permit

Determination of Information Requirements

Determination of No Unreasonable Degradation

Decision to Issue/Reissue or Deny a Permit

Insufficient Information

3 OPTIONS FOR MONITORING UNDER THE BASIS OF "NO IRREPARABLE HARM"

Background

Criteria for Evaluating the Potential for Environmental Impact

Major/Minor Discharges

Discharges to Stressed Waters

Discharges to Sensitive Biological Areas

Presence of Other Discharges in the Area

Monitoring Requirements Based on Perceived Potential Environmental Threat

Minimal Potential Threat

Moderate Potential Threat

High Potential Threat

Summary

4 SUMMARY OF WORKING METHODS

Physical Characteristics

Rationale

Monitoring Design Considerations

Analytical Methods Considerations

QA/QC Considerations

Statistical Design Considerations

Use of Data

Summary and Recommendations

Water Chemistry

[Sub-headings same as for Physical Characteristics]

Sediment Chemistry

[Sub-headings same as for Physical Characteristics]

Sediment Grain Size

[Sub-headings same as for Physical Characteristics]

Benthic Community Structure

[Sub-headings same as for Physical Characteristics]

Fish and Shellfish Pathobiology

[Sub-headings same as for Physical Characteristics]

Fish Populations

[Sub-headings same as for Physical Characteristics]

Plankton: Biomass, Productivity, and Community Structure/Function

[Sub-headings same as for Physical Characteristics]

Habitat Identification Methods

[Sub-headings same as for Physical Characteristics]

Bioaccumulation

[Sub-headings same as for Physical Characteristics]

Pathogens

[Sub-headings same as for Physical Characteristics]

Effluent Characterization

[Sub-headings same as for Physical Characteristics]

Mesocosms and Microcosms

[Sub-headings same as for Physical Characteristics]

5 LITERATURE CITED

APPENDIX A MONITORING METHODS REFERENCES

APPENDIX B OCEAN DISCHARGE CRITERIA

U.S. EPA. 1994. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume II: Risk Assessment and Fish Consumption Limits. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water, Washington, DC. EPA 823-B-94-004.

Media in which methods can be used: Water Sediment Biota

Keywords: Biological characterization, QA/QC, metals, pesticides, PCBs, inorganics, organics,

tissue analysis, data analysis/management

Abstract

The purpose of this document is to provide guidance to States and Native American Tribes on the development of fish consumption limits for chemically contaminated noncommercial freshwater and estuarine fish.

The objective of Volume II is to provide guidance on the development of risk-based meal consumption limits for 23 high-priority chemical fish contaminants (target analytes). The target analytes addressed in this guidance series were selected as particularly significant fish contaminants by EPA's Office of Water, based on their occurrence in fish, their potential for bioaccumulation, and their toxicity to humans. The criteria for their selection are discussed in Volume I of this series. In addition to a presentation of consumption limits, Volume II contains a discussion of risk assessment methods used to derive the consumption limits, as well as a discussion of methods to modify these limits to reflect local conditions. Additional sources of information are listed for those seeking a more detailed discussion of risk assessment methods.

The resultant guidance should help improve the comparability of the methods that underlie fish consumption advisory programs. This manual provides guidance only and does not constitute a regulatory requirement of the States.

This manual is the second in a four volume set of documents prepared by the EPA Office of Water. *Volume I: Fish Sampling and Analysis*, was released in September 1993. *Volume III: Risk Management* and *Volume IV: Risk Communication*, are scheduled for publication during late 1994 or early 1995. All four of these documents are begin developed in a cooperative fashion with Native American Tribes and State, Federal, and Local Government Agencies.

Copies of this document may be obtained by writing to the U.S. Environmental Protection Agency, Fish Contamination Section (4305), 401 M Street S.W., Washington, D.C. 20460. [extracted from document]

Contact: (202) 260-7786

1 INTRODUCTION

Overview and Objectives Sources

2 DEVELOPMENT AND USE OF RISK-BASED CONSUMPTION LIMITS

Overview and Section Organization

Equations Used to Develop Risk-Based Consumption Limits

Calculation of Consumption Limits for Carcinogenic Effects

Calculation of Daily Consumption Limits

Calculation of Meal Consumption Limits

Input Parameters

Calculation of Consumption Limits for Noncarcinogenic Effects

Calculation of Daily Consumption Limits

Calculation of Meals per Month

Input Parameters

Calculation of Consumption Limits for Developmental Effects

Default Values and Alternative Values for Calculating Consumption Limits

Maximum Acceptable Risk Level (RL)

Chronic Reference Doses and Cancer Potencies (RfDs and q,*s)

Consumer Body Weight

Derivation of Multipliers for Body Weight Adjustment

Meal Size

Meal Frequency

Modification of Consumption Limits for Multiple Species, Single

Contaminant Exposure

Carcinogenic Effects

Noncarcinogenic Effects

Modification of Consumption Limits for Multiple Contaminant Exposures

Carcinogenic Effects

Noncarcinogenic Effects

Species-Specific Consumption Limits in a Multiple Species Diet

Choice of Consumption Limits

3 RISK-BASED CONSUMPTION LIMIT TABLES

Overview and Section Organization

Consumption Limit Tables

4 RISK ASSESSMENT METHODS

Introduction

Other Information Sources

Hazard Identification

Approach for Fish Contaminants

Toxicological Data

Contaminant Data

Sources of Exposure

Assumptions and Uncertainty Analysis

Dose-Response Assessment

Acute Exposure Toxicity

Chronic Exposure Toxicity

Carcinogenicity

Mutagenicity/Genotoxicity

Developmental Toxicity

Multiple Chemical Exposure: Interactive Effects

Assumptions and Uncertainties

Exposure Assessment

Chemical Occurrences in Fish

Distribution in Fish Tissues

Fish Contaminants

Geographic Distribution of Contaminated Fish

Individual Exposure Assessment

Exposure Variables

Averaging Periods Versus Exposure Durations

Parameters Used in Determining Individual Consumption Patterns

Multiple Chemical Exposures

Population Exposure Assessment

Uncertainty and Assumptions

Chemical Concentrations in Fish

Body Weight

Consumption Rate

Multiple Species and Multiple Contaminants

Other Sources of Exposure

Risk Characterization

Carcinogenic Toxicity

Noncarcinogenic Toxicity

Subpopulation Considerations

Multiple Species and Multiple Contaminant Considerations

Incorporating Considerations of Uncertainty in Consumption Limits

5 TOXICITY DATA FOR TARGET ANALYTES AND METHODOLOGY FOR RISK VALUE CALCULATION

Introduction

Categories of Information Provided in Section 5.6 for Target Analytes

Pharmacokinetics

Acute Toxicity

Chronic Toxicity

Developmental Toxicity

Mutagenicity

Carcinogenicity

Special Susceptibilities

Interactive Effects

Data Gaps

Summary of EPA Risk Values

Major Sources

Statement Regarding Uncertainty

Methods for Calculating Developmental Toxicity Exposure Limits

Definitions

Special Issues in the Evaluation of Developmental Toxins

Methods for Estimating Exposure Limits

Identify the Most Appropriate NOAEL or LOAEL

Apply Relevant Uncertainty and Modifying Factors

Sources of Additional Information on Developmental Toxicity

Methods for Calculating Alternative Values for Systemic Chronic Effects

Identify the Most Appropriate NOAEL or LOAEL

Apply Relevant Uncertainty and Modifying Factors

Toxicity Characteristics of Groups of Analytes

Organochlorine Pesticides

Organophosphate Pesticides

Toxicity Data for Target Analytes

Chlordane

DDT, DDE, DDD

Dicofol

Dieldrin

Endosulfan I,II

Endrin

Heptachlor Epoxide

Hexachlorobenzene

Lindane

Mirex

Toxaphene

Carbophenothion

Chlorpyrifos

Diazinon

Disulfoton

Ethion

Terbufos

Oxyfluorfen

PCBs

Dixon

Cadmium

Methylmercury

Selenium

6 LITERATURE CITED

APPENDIX A: MUTAGENICITY AND GENOTOXICITY

APPENDIX B: ADDITIONAL SOURCES OF INFORMATION

Reference No.: 093

U.S. EPA. 1994. Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods. U.S. Environmental Protection Agency, Office of Science and Technology, Washington, DC. EPA 600/R-94/025.

Media in which methods can be used:

Water

✓ Sediment

Biota

Keywords:

Sediment quality, toxicity/bioassay, QA/QC, sampling

Abstract

This manual describes a laboratory method for determining the short-term toxicity of contaminated whole-sediments using marine and estuarine amphipod crustaceans. Test sediments may be collected from estuarine or marine environments or spiked with compounds in the laboratory. A single test method is outlined that may be used with any of four amphipod species, including Ampelisca abdita, Echaustorius estuarius, Leptocheirus plumulosus, and Rhepoxynius abronius. The toxicity test is conducted for 10 days in 1 L glass chambers containing 175 mL of sediment and 800 mL of overlying water. Overlying water is not renewed, and test organisms are not fed during the toxicity tests. Temperature and salinity of overlying water, and choice of negative control and reference sediments, are species-specific. The endpoint in the toxicity test is survival, and reburial of surviving amphipods is an additional measurement that can be used as an endpoint. [copied from document]

Contact: (202) 260-5385

1 INTRODUCTION

Significance of Use
Program Applicability
Scope and Application
Performance Based Criteria

2 SUMMARY OF METHOD

Method Description and Experimental Design Types of Tests Test Endpoints

3 DEFINITIONS

4 INTERFERENCES

General Introduction
Species-Specific Interferences

5 HEALTH, SAFETY AND WASTE MANAGEMENT

General Precautions
Safety Equipment
General Laboratory and Field Operations
Disease Prevention
Safety Manuals
Pollution Prevention, Waste Management, and Sample Disposal

- 6 FACILITIES, EQUIPMENT, AND SUPPLIES
- 7 WATER, REAGENTS, AND STANDARDS
- 8 SAMPLE COLLECTION, STORAGE, MANIPULATION, AND CHARACTERIZATION

9 QUALITY ASSURANCE AND QUALITY CONTROL

Introduction
Performance Based Criteria
Facilities, Equipment, and Test Chambers
Test Organisms
Water
Sample Collection and Storage
Test Conditions
Quality of Test Organisms

Quality of Food

Test Acceptability

Analytical Methods

Calibration and Standardization

Replication and Test Sensitivity

Demonstrating Acceptable Performance

Documenting Ongoing Laboratory Performance

Reference Toxicants

Record Keeping

10 COLLECTION, CULTURE, AND MAINTENANCE OF TEST ORGANISMS

Life History

Species Selection

Field Collection .

Holding and Acclimation

Culture Method for Leptocheirus plumulosus

11 TEST METHOD 100.4: AMPELISCA ABDITA, EOHAUSTORIUS ESTUARIUS, LEPTOCHEIRUS PLUMULOSUS, OR RHEPOXYNIUS ABRONIUS 10-D SURVIVAL TEST FOR WHOLE SEDIMENTS

Introduction

Recommended Test Method

General Procedures

Interpretation of Results

12 DATA RECORDING, ANALYSIS, CALCULATIONS, AND REPORTING

Data Recording

Data Analysis

13 PRECISION AND ACCURACY

Determining Precision and Accuracy

Accuracy

Replication and Test Sensitivity

Demonstrating Acceptable Lab Performance

Precision of Sediment Toxicity Test Methods

14 REFERENCES

APPENDIX: EXAMPLE DATA SHEETS

U.S. EPA. 1994. Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN. EPA 600/R-94/024.

Media in which methods can be used:

Water

✓ Sediment

✓ Biota

Keywords:

Sediment quality, bioaccumulation, toxicity/bioassay, QA/QC, sampling

Abstract

Procedures are described for testing freshwater organisms in the laboratory to evaluate the toxicity or bioaccumulation of contaminants associated with whole sediments. Sediments may be collected from the field or spiked with compounds in the laboratory. Toxicity methods are outlined for two organisms, the amphipod Hyalella azteca and the midge Chironomus tentans. The toxicity tests are conducted for 10 days in 300-mL chambers containing 100 mL of sediment and 175 mL of overlying water. Overlying water is renewed daily, and the test organisms are fed during the toxicity tests. The endpoint of the toxicity test with H. azteca is survival and the endpoints in the C. tentans are survival and growth. Procedures are described primarily for testing freshwater sediments: however, estuarine sediments (up to 15 ppt salinity) can also be tested with *H. azteca*.

Guidance for conducting 28-day bioaccumulation tests with the oligochaete Lumbriculus variegatus is provided in the manual. Overlying water is renewed daily and test organisms are not fed during bioaccumulation tests. Methods are also described for determining bioaccumulation kinetics of different classes of compounds during 28-day exposures with L. variegatus. [copied from document]

Contact: (202) 260-5385

1 INTRODUCTION

Significance of Use
Program Applicability
Scope and Application
Performance Based Criteria

2 SUMMARY OF METHOD

Method Description and Experimental Design Types of Tests Test Endpoints

3 DEFINITIONS

4 INTERFERENCES

General Interferences
Species-Specific Interferences

5 HEALTH, SAFETY AND WASTE MANAGEMENT

General Precautions
Safety Equipment
General Laboratory and Field Operations
Disease Prevention
Safety Manuals
Pollution Prevention, Waste Management, and Sample Disposal

- 6 FACILITIES, EQUIPMENT, AND SUPPLIES
- 7 WATER, FORMULATED SEDIMENT, REAGENTS, AND STANDARDS
- 8 SAMPLE COLLECTION, STORAGE, MANIPULATION AND CHARACTERIZATION

9 QUALITY ASSURANCE AND QUALITY CONTROL

Introduction
Performance-Based Criteria
Facilities, Equipment, and Test Chambers
Test Organisms
Water
Sample Collection and Storage
Test Conditions
Quality of Test Organisms

Quality of Food

Test Acceptability

Analytical Methods

Calibration and Standardization

Replication and Test Sensitivity

Demonstrating Acceptable Performance

Documenting Ongoing Laboratory Performance

Reference-Toxicity Testing

Record Keeping

10 COLLECTION, CULTURING, AND MAINTAINING TEST ORGANISMS

Life Histories

General Culturing Procedures

Specific Culturing Procedures for H. azteca

Specific Culturing Procedures for C. tentans

Specific Culturing Procedures for L. variegatus

11 TEST METHOD 100.1: HYALELLA AZTECA 10-D SURVIVAL TEST FOR SEDIMENTS

Introduction

Recommended Test Method for Conducting a 10-d Sediment Toxicity Test with *Hyalella azteca*

General Procedures

Interpretation of Results

12 TEST METHOD 100.2: CHIRONOMUS TENTANS 10-D SURVIVAL AND GROWTH TEST FOR SEDIMENTS

Introduction

Recommended Test Method for Conducting a 10-d Sediment Toxicity Test with *Chironomus tentans*

General Procedures

Interpretation of Results

13 TEST METHOD 100.3: LUMBRICULUS VARIEGATUS BIOACCUMULATION TEST FOR SEDIMENTS

Introduction

Guidance for Conduction a 28-d Sediment Bioaccumulation Test with Lumbriculus variegatus

General Procedures

Interpretation of Results

14 DATA RECORDING, DATA ANALYSIS AND CALCULATIONS, AND REPORTING

15 PRECISION AND ACCURACY

Determination of Precision and Accuracy

Accuracy

Replication and Test Sensitivity

Demonstrating Acceptable Laboratory Performance

Precision of Sediment Toxicity Test Methods

REFERENCES

APPENDIX A SUMMARY OF USEPA WORKSHOP ON DEVELOPMENT OF STANDARD

SEDIMENT TEST METHODS

APPENDIX B EXPOSURE SYSTEMS

APPENDIX C FOOD PREPARATION

APPENDIX D EXAMPLE DATA SHEETS

Reference No.:

U.S. EPA. 1994. National Directory of Volunteer Environmental Monitoring Programs. 4th ed. U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC. pp. 551. EPA 841-B-94-001.

Media in which methods can be used:

✓ Water

✓ Sediment

✓ Biota

Keywords:

Water quality, sediment quality, biological characterization, volunteer monitoring

Abstract

Volunteer environmental monitoring programs are being established at an increasing rate during the past 5 years. This fourth edition of the National Directory includes 517 programs in 45 states. These programs are making substantial contributions to scientific research, resource management, and local advocacy.

This edition contains the results of nationwide survey questionnaire, mailed to subscribers of EPA's *The Volunteer Monitor*. Data reported included details on the uses the collected environmental data, the organizations that use the data, the number and environment type of stations monitored, monitoring frequency, physical, chemical, biological, and other parameters. The data also contains contact names, addresses, and telephone number of the volunteer program coordinators. [extracted from document]

Contact: (202) 260-7018

- 1 INTRODUCTION
- 2 DIRECTORY OF MONITORING PROGRAMS (LISTED BY STATE)
- 3 DIRECTORY INDEX

U.S. EPA and U.S. Army Corps of Engineers. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual. U.S. Environmental Protection Agency, Office of Water and Department of the Army, U.S. Army Corps of Engineers, Washington, DC. pp. 288. EPA-503/ 8-91/001.

Media in which methods can be used:	✓ Water	✓ Sediment	Biota
-------------------------------------	---------	------------	-------

Keywords:

Water quality, sediment quality, sampling, QA/QC, grain size, total solids, toxicity/ bioassays, metals, organics, inorganics, total organic carbon, PAHs, PCBs, pesticides, tissue analysis, bioaccumulation, data analysis/management

Abstract

This manual, commonly referred to as the "Green Book", is an update of Ecological Evaluation of Proposed Discharge of Dredged Material into Ocean Waters (EPA/USACE, 1977). The manual contains technical guidance for determining the suitability of dredged material for ocean disposal through chemical, physical, and biological evaluations. The technical guidance is intended for use by dredging applicant, laboratory scientists, and regulators in evaluating dredged-material compliance with the United States Ocean Dumping Regulations.

Integral to the manual is a tiered-testing procedure for evaluating compliance with the limiting permissible concentration (LPC) as defined by the ocean-dumping regulations. The procedure comprises four levels (tiers) of increasing investigative intensity that generate information to assist in making oceandisposal decisions.

This manual provides a balance between technical state-of-the-art and routinely implementable guidance for using the evaluative procedures specified in the regulations. Guidance is included on the appropriate uses and limitations of the various procedures and on sound interpretation of the results. This manual contains summaries and discussions of the procedures for ecological evaluation of dredged material required by the regulations, tests to implement them, definitions, sample-collection and preservation procedures, evaluative procedures, calculations, interpretative guidance, and supporting references required for the evaluation of dredged material discharge applications in accordance with the regulations. Even so, this manual cannot stand alone. It is imperative that the supporting references be consulted for detailed or more comprehensive guidance whenever indicated. The technical procedures in this manual are designed only for dredged material.

This manual is organized into three parts and two appendices. Part I, General Considerations, presents the purpose and background of the manual and summarizes the Federal regulations that are relevant to dredged material evaluations. Part II, Evaluation of Potential Environmental Impact, presents guidance on the testing and evaluation of dredged material that is proposed for ocean disposal. Sections 4.0 through 7.0 of Part II describe the components of the four tiers in the tiered-testing procedure. Part III, Data Generation, presents guidance on sampling, physical and chemical analysis, biological-effects evaluation, statistical methods, and quality assurance. Appendix A is a reprint of the ocean dumping regulations (40 CFR 220-228) and Appendix B provides technical guidance for using the numerical models to calculate initial mixing.

[extracted from document]

Contact: (601) 634-2571

PART I. GENERAL CONSIDERATIONS

1 INTRODUCTION

Background

Applicability

Purpose and Scope

Organization of This Manual

Changes From and Revisions to the Previous Manual

Definitions

References

2 OVERVIEW OF THE REGULATIONS

Part 225: Corps of Engineers (USACE) Dredged-Material Permits

Part 227, Subpart A: General

Part 227, Subpart B: Environmental Impact

Trace Contaminants

Biological Evaluations

Part 227, Subpart C: Need for Ocean Dumping

Part 227, Subpart D: Impact of the Proposed Dumping on Aesthetic,

Recreational, and Economic Values

Part 227, Subpart E: Impact of the Proposed Dumping on Other Uses of

the Ocean

Part 227, Subpart G: Definitions

Limiting Permissible Concentration

Water Column

Benthic Environment

Estimation of Initial Mixing

Species Selection

PART II. EVALUATION OF POTENTIAL ENVIRONMENTAL IMPACT

3 OVERVIEW OF TESTING AND EVALUATION

Reference and Control Sediments

Control Sediments

Reference Sediment

Tiered Testing and Evaluation

4 TIER I

Compilation of Existing Information

Identification of Contaminants of Concern

Determination of Compliance

5 TIER II EVALUATION

Water-Column Evaluations

Step 1: Screen to Determine WQC Compliance

Step 2: Elutriate Analysis to Determine WQC Compliance

Water-Column Toxicity Compliance

Benthic Impact

6 TIER III EVALUATION

Water-Column Bioassays

Whole-Sediment Bioassays

Bioaccumulation by Benthos

References

7 TIER IV EVALUATION

Bioassays

Bioaccumulation by Benthos

References

PART III. DATA GENERATION

8 COLLECTION AND PRESERVATION OF SAMPLES

Background for a Sampling Plan

Components of a Sampling Plan

Review of Dredging Specifications

Historical Data

Subdivision of Dredging Area

Selection of Sampling Sites and Number of Samples

Sample-Collection Methods

Sediment-Sample Collection

Water-Sample Collection

Organism Collection

Sample Handling, Preservation, and Storage

Sample Handling

Sample Preservation

Sample Storage

Logistical Considerations and Safety Precautions

Quality Control

Documentation

Standard Operating Procedures

Sample Labels

Sample Tracking

Archived Samples

References

9 PHYSICAL ANALYSIS OF SEDIMENT AND CHEMICAL ANALYSIS OF SEDIMENT, WATER, AND TISSUE SAMPLES

Physical Analysis of Sediment

Detection Limits

Chemical Analysis of Sediment

Selection of Analytical Targets (Sediment)

Selection of Chemical Analytical Techniques (Sediment)

Quality Control

Chemical Analysis of Water

Recommended Analytical Targets (Water)

Selection of Analytical Techniques (Water)

Quality Control

Chemical Analysis of Tissues

Recommended Analytical Targets (Biota)

Selection of Analytical Techniques (Biota)

Quality Control

References

10 GUIDANCE FOR PERFORMING TIER II EVALUATIONS

Tier II: Water-Column Effects

Screen to Determine WQC Compliance

Elutriate Analysis to Determine WQC Compliance

Dredged Material Preparation (Standard Elutriate Test)

Chemical Analysis

Determination of WQC Compliance (Standard Elutriate Test)

Tier II: Theoretical Bioaccumulation Potential (TBP) of Nonpolar Organic Chemicals

References

11 GUIDANCE FOR PERFORMING BIOLOGICAL-EFFECTS TESTS

Tier III: Water-Column Bioassays

Species Selection

Apparatus

Experimental Conditions

Experimental Procedures

Quality Control Considerations

Data Presentation and Analysis

Determination of Compliance

Whole-Sediment Bioassays

Species Selection

Infaunal Amphipods

Organism Handling

Laboratory Apparatus

Experimental Conditions

Experimental Procedures

Quality Control Consideration

Data Analysis

Determination of Compliance

Tier IV: Chronic-Effects Evaluations

Tier IV: Case-Specific Evaluations

References

12 GUIDANCE FOR PERFORMING BIOACCUMULATION TESTS

Tier III: Determination of Bioavailability

Species Selection and Apparatus

Experimental Conditions

Chemical Analysis

Data Analysis

Determination of Compliance

Quality Control Considerations

Tier IV: Determination of Steady-State Bioaccumulation

Laboratory Assessment of Steady-State Bioaccumulation

Species Selection and Apparatus

Experimental Conditions

Chemical Analysis

Data Analysis

Determination of Compliance

Other Considerations

Quality Control Considerations

Field Assessment of Steady-State Bioaccumulation

Apparatus

Species Selection

Sampling Design and Conduct

Basis for Evaluation of Bioaccumulation

Sample Collection and Handling

Chemical Analysis

Data Analysis

Determination of Compliance

References

13 STATISTICAL METHODS

Sample Size Consideration

Biological Effects

Tier III Water-Column Bioassays

Calculating Median Lethal Concentration

Tier III Benthic Bioassays

Bioaccumulation

Tier III 10- or 28-Day Single-Time Point Laboratory Study
Comparisons with a Reference Sediment
Comparisons with an Action Level
Tier IV Time-Series Laboratory Bioaccumulation Study
Steady-State Bioaccumulation from Field Data
References

14 QUALITY ASSURANCE CONSIDERATIONS

Structure of QA Programs

Government (Data User) QA Program

Preaward Inspections

Interlaboratory Comparison

Routine Inspections

Data Generator QA Program

General Components of All QA Programs

Organization

Personnel Qualifications

Facilities

Equipment and Supplies

Test Methods and Procedures

Sample Handling and Tracking

Documentation and Recordkeeping

Quality Assurance Plan

Standard Operating Procedures (SOP)

Data Quality Assessment

Data Validation

Chemical Quality Control

Biological Quality Control (Reference-Toxicant Testing)

Performance and System Audits

Management of Nonconformance Events

Archiving of Data and Samples

References

APPENDIX A: TITLE 40 CODE OF FEDERAL REGULATIONS, PARTS 220-228

APPENDIX B: NUMERICAL MODELS FOR INITIAL MIXING EVALUATIONS

U.S. EPA and U.S. Army Corps of Engineers. 1994. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. - Testing Manual (Draft): Inland Testing Manual. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC and Department of the Army, U.S. Army Corps of Engineers, Washington, DC. EPA-823-B-94-002.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, sampling, QA/QC, grain size, total solids, toxicity/ bioassays, pathogenic organisms, bioaccumulation, data analysis/management

Abstract

The USACE and EPA have statutory and regulatory responsibilities with regard to the management of dredged material discharge activities in inland and near coastal waters. The USACE is responsible for regulating non-Federal dredging and dredged material discharge activities through a permit program, and for conducting Federal dredging and discharge activities in conjunction with its Civil Works Program. EPA is responsible for establishing, in conjunction with the USACE, guidelines pertaining to the evaluation of these activities, and performing oversight actions.

This manual, commonly referred to as the Inland Testing Manual, represents a major effort by the USACE and EPA to establish procedures applicable to the evaluation of potential contaminant-related environmental impacts associated with the discharge of dredged material in waters regulated under Section 404 of the Clean Water Act (inland waters, near coastal waters, and surrounding environs) through chemical, physical, and biological evaluations. This manual is consistent, to the maximum extent practicable, with the procedures established for ocean waters (i.e., the Green Book, entitled Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Manual EPA/USACE, 1991). This manual replaces the May 1976 proposed testing protocol, Ecological Evaluation of Proposed Discharge of Dredged or Fill Material into Navigable Waters.

The technical guidance in this manual is intended for use by USACE and EPA personnel, state regulatory personnel, as well as dredging permit applicants and others (e.g., scientists, managers, and other involved or concerned individuals). Key changes to the 1976 testing protocol include a tiered approach, accommodation for sediment quality standards, 28-day bioaccumulation testing, comparison of benthic test results with those of the reference sediment, improved statistics, improved model applications, and new test organisms. Because this manual is national in scope, the guidance provided is generic and may need to be modified in certain instances. Permit applicants and others are strongly encouraged to consult with their appropriate Regional and District experts for additional guidance. [copied from document]

Contact: (202) 260-8085

PART I: GENERAL CONSIDERATIONS

1 INTRODUCTION

Background

Statutory/Regulatory Overview

Statutory Overview

Section 404 Regulatory Overview

The Section 404(b)(1) Guidelines

Particulars of Sections 230.60 and 230.61

Relationship to Section 401 CWA Water Quality Certification

2 SCOPE AND APPLICABILITY

This Manual Is Intended to Address

This Manual Is Not Intended to Address

Dredged Material Discharge for Beneficial Uses

The Role of Biological Evaluations (Toxicity and/or Bioaccumulation Tests) in Manual

The Role of Water and Sediment Chemical Evaluations in the Manual

Water Column Effects

Mixing

Benthic Effects

Management Options

The Relationship of the Inland Testing Manual to Other USACE/EPA Dredged Material Management Efforts

Relationship of the Manual to the USACE/EPA Framework Document

Relationship of the Manual to the EPA/USACE Green Book

Relationship of the Manual to EPA Contaminated Sediment Strategy and Sediment Quality Criteria

PART 2: EVALUATION OF POTENTIAL ENVIRONMENTAL IMPACT

3 OVERVIEW OF TESTING AND EVALUATION

Tiered Testing and Evaluation

Control and Reference Sediments

Reference Sediment Sampling

Reference Sediment Sampling Plan

4 TIER I EVALUATION

Compilation of Existing Information
Identification of Contaminants of Concern
Microbial Contamination

Chemical Contamination Tier I Conclusions

5 TIER II EVALUATION

Water Column Impact
Screen Relative to WQS
Elutriate Analysis Relative to WQS
Benthic Impact
Tier II Conclusions

6 TIER III EVALUATION

Water Column Toxicity Tests Benthic Toxicity Tests Benthic Bioaccumulation Tier III Conclusions

7 TIER IV EVALUATION

Toxicity Tests

Benthic Bioaccumulation

PART 3: SAMPLING AND ANALYSIS

8 SAMPLING

Preparation for Sampling
Components of a Sampling Plan
Review of Dredging Plan
Historical Data
Subdivision of Dredging Area
Selection of Sampling Locations and Number of Samples
Sample Collection Methods
Sediment Sample Collection
Water Sample Collection
Organism Collection
Sample Handling, Preservation, and Storage
Logistical Considerations and Safety Precautions

9 PHYSICAL ANALYSIS OF SEDIMENT AND CHEMICAL ANALYSIS OF SEDIMENT, WATER, AND TISSUE SAMPLES

Physical Analysis of Sediment
Target Detection Limits
Chemical Analysis of Sediment
Target Analytes

Non-Indigenous Test Species

Selection of Analytical Techniques

Chemical Analysis of Water

Analytical Target

Analytical Techniques

Chemical Analysis of Tissues

Target Analytes

Analytical Techniques

10 GUIDANCE FOR PERFORMING TIER II EVALUATIONS

Tier II: Water Column Effects

Screen Relative to WQS

Elutriate Analysis Relative to WQS

Standard Elutriate Preparation

Chemical Analysis

Comparison with WQS (Standard Elutriate Test)

Theoretical Bioaccumulation Potential (TBP) of Nonpolar Organic Chemicals

11 GUIDANCE FOR PERFORMING BIOLOGICAL EFFECTS TESTS

Tier III: Water Column Toxicity Tests

Species Selection

Apparatus

Laboratory Conditions

Laboratory Procedures

Data Presentation and Analysis

Conclusions

Tier III: Benthic Toxicity Tests

Species Selection

Laboratory Procedures

Chronic/Sublethal Tests

Data Presentation and Analysis

Conclusions

Tier IV: Chronic/Sublethal Effects Evaluations

Tier IV: Case Specific Evaluations

12 GUIDANCE FOR PERFORMING BIOACCUMULATION TESTS

Tier III: Determination of Bioavailability

Species Selection and Apparatus

Experimental Conditions

Chemical Analysis

Data Presentation and Analysis

Conclusions

Tier IV: Determination of Steady State Bioaccumulation

Laboratory Testing

Field Assessment of Steady State Bioaccumulation

Apparatus

Species Selection

Sampling Design and Conduct

Basis for Evaluation of Bioaccumulation

Sample Collection and Handling

Chemical Analysis

Data Presentation and Analysis

Conclusions

13 REFERENCES

APPENDIX A 40 CFR PART 230

APPENDIX B GUIDANCE FOR EVALUATION OF EFFLUENT DISCHARGES FROM

CONFINED DISPOSAL FACILITIES

APPENDIX C EVALUATION OF MIXING

APPENDIX D STATISTICAL METHODS

APPENDIX E SUMMARY OF TEST CONDITIONS AND TEST ACCEPTABILITY

CRITERIA FOR TIER III BIOASSAYS

APPENDIX F METHODOLOGIES FOR IDENTIFYING AMMONIA AS A TOXICANT IN

DREDGED-MATERIAL TOXICITY TESTS

APPENDIX G QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

CONSIDERATIONS

		,		
		;		,
		: .		
		:	,	
		. !		
		1		
		!		
		1		
•	,			
		:	,	
		1		

U.S. FDA. 1990. National Shellfish Sanitation Program Manual of Operations Part 1 Sanitation of Shellfish Growing Areas 1990 Revision. U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Cooperative Programs, Shellfish Sanitation Branch, Washington, DC. pp. 136.

Media in which methods can be used:

Water

Sediment

✔ Biota

Keywords:

Water quality, biological characterization, sampling, tissue analysis, pathogenic

organisms, toxicity, QA/QC

Abstract

This manual was developed from a cooperative effort between the U.S. Food and Drug Administration and the Interstate Shellfish Sanitation Conference. This first of two volumes is prepared as a guide for preparing State laws and regulations relating to sanitary control of shellfish growing area classification, laboratory procedures, shellfish relay operations, growing area patrol operations, and marine biotoxins.

A section on laboratory procedures provides National Shellfish Sanitation Program laboratories with information on: (1) analytical methods and quality assurance procedures associated with the examination of seawater and shellfish; (2) references and information necessary for conducting bacteriological, toxicological, chemical, and physical tests; and (3) guidance for development and implementation of quality assurance procedures. Adherence to the procedures set out in this section will provide the uniformity necessary to provide reliable laboratory results upon which public health issues can be made in determining whether shellfish are suitable for human consumption. [extracted from document]

Contact: (202) 205-5251

- 1 DEFINITIONS
- 2 SATISFACTORY COMPLIANCE
- 3 SECTION A GENERAL ADMINISTRATION PROCEDURES
 State Laws and Regulations
 General Administrative Procedures to be Used by States
- 4 SECTION B LABORATORY PROCEDURES

Bacterial

Toxicological

Chemical and Physical

Quality Assurance Procedures

5 SECTION C - GROWING AREA SURVEY AND CLASSIFICATION

Sanitary Surveys of Growing Areas

Classification of Growing Areas

Approved Areas

Conditionally Approved Areas

Restricted Areas

Conditionally Restricted Areas

Prohibited Areas

Control of Areas Due to Marine Biotoxins

Control of Areas Used as a Marina

Systematic Random Sampling

6 SECTION D - CONTROLLED RELAYING

Relaying

Container Relaying

7 SECTION E - PATROL OF SHELLFISH HARVESTING AREAS

Patrol Policy Document

Patrol of Closed Areas

8 SECTION F - CONTROL OF HARVESTING

Licensing and Permitting

Identification of Closed Areas

Depletion of Closed Areas

Educational Measures

Penalties and Sanctions

APPENDIX A:	SUGGESTED STATE CONTINGENCY PLAN FOR CONTROL OF MARINE BIOTOXINS
APPENDIX B:	MINIMUM REQUIREMENTS FOR PERFORMING SHORELINE SURVEYS IN SHELLFISH GROWING AREAS
APPENDIX C:	SUGGESTED OUTLINE OF MODEL SANITARY REPORT
APPENDIX D:	ACTION LEVELS, TOLERANCES AND OTHER VALUES FOR POISONOUS OR DELETERIOUS SUBSTANCES IN SEAFOOD
APPENDIX E:	EVALUATION OF LABORATORIES BY STATE SHELLFISH LABORATORY EVALUATION OFFICERS
APPENDIX F:	ESTIMATING THE NINETIETH PERCENTILE
APPENDIX G:	RECOMMENDATIONS FOR ROUTINE FDA EVALUATION OF STATE PROGRAM PATROL ELEMENT FDA STANDARDIZED PATROL EVALUATION FORMAT
APPENDIX H:	PROTOCOL FOR REVIEW CLASSIFICATION OF AREAS IMPLICATED IN SHELLFISH RELATED ILLNESSES
REFERENCES	

1	
!	
!	
1	
ı	
:	
	1
	•
ř	
:	

U.S. Geological Survey. 1987. Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples. In Techniques of Water-Resources Investigations of the United States Geological Survey. Edited by L.J. Britton and P. E. Greeson. U.S. Department of the Interior, Geological Survey, Denver, CO. pp. 375.

✓ Biota Media in which methods can be used: Water Sediment

Keywords: Biological characterization, pathogenic organisms, population/community, sam-

pling

Abstract

The series of chapters on techniques describes methods used by the U.S. Geological Survey for planning and conducting water-resources investigations. The material is arranged under major subject heading called books and is further subdivided into section and chapters. Book 5 is on laboratory analysis. Section A is on water. The unit of publication, the chapter, is limited to a narrow field of subject matter.

Chapter A4 contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water to determine its biological and microbiological properties. Part 1 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity, and bioassays. Each method is summarized, and the applications, interferences, apparatus, reagents, analyses, calculations, reporting of results, precisions, and references are given. Part 2 consists of a glossary. Part 3 is a list of taxonomic references.

[extracted from document]

Contact: (303) 236-7476

- 1 ABSTRACT
- 2 INTRODUCTION

PART 1: DESCRIPTION OF METHODS

1 BACTERIA

Introduction

Collection

Surface Water

Groundwater

Soil and Sediment

Sample Containers

Dechlorination

Chelating Agent

Preservation and Storage

References Cited

Standard Plate Count (Membrane-Filter Method)

Total Coliform Bacteria (Membrane-Filter Method)

Immediate Incubation Test

Delayed Incubation Test

Total Coliform Bacteria (Most-Probable-Number, MPN, Method)

Presumptive Test

Presumptive Onsite Test

Confirmation Test

Fecal Coliform Bacteria (Membrane-Filter Method)

Immediate Incubation Test

Total Coliform Bacteria (Most-Probable-Number, MPN, Method)

Presumptive Test

Fecal Streptococcal Bacteria (Membrane-Filter Method)

Immediate Incubation Test

Confirmation Test

Fecal Streptococcal Bacteria (Most-Probable-Number, MPN, Method)

Presumptive and Confirmation Test

Nitrifying Bacteria (Most-Probable-Number, MPN, Method)

Denitrifying and Nitrate-Reducing Bacteria (Most-Probable-Number, MPN, Method)

Sulfate-Reducing Bacteria (Most-Probable-Number, MPN, Method)

Total Bacteria (Epifluorescence Method)

Salmonella and Shigella (Diatomaceous-Earth and Membrane Filter Method)

Pseudomonas aeruginosa (Membrane Filter Method)

2 PHYTOPLANKTON

Introduction

Collection

Precision

References Cited

Counting-Cell Method

Inverted-Microscope Method

Permanent-Slide Method for Planktonic Diatoms

3 ZOOPLANKTON

Introduction

Collection

Precision

References Cited

Counting-Cell Method

Gravimetric Method for Biomass

4 SESTON (TOTAL SUSPENDED MATTER)

Introduction

Collection

References Cited

Glass-Fiber Filter Method

5 PERIPHYTON

Introduction

['] Collection

Sampling From Natural Substrates

Sampling From Artificial Substrates

References Cited

Sedgwick-Refter Method

Gravimetric Method for Biomass

Permanent-Slide Method for Periphytic Diatoms

Inverted Microscope Method for the Identification and Enumeration of Periphytic Diatoms

6 MACROPHYTES

Introduction

Collection

References Cited

Floral Survey (Qualitative Method)

Distribution and Abundance (Quantitative Method)

BENTHIC INVERTEBRATES Introduction Collection Faunal Surveys Dip or Hand Net **Dredges** Numerical Assessment Dip or Hand Net Individual Rocks **Artificial Substrates** Multiple-Plate Sampler Barbecue-Basket Sampler Collapsible-Basket Sampler Distribution and Abundance Box, Drum, or Stream-Bottom Fauna Sampler Surber Sampler Ekman Grab Ponar and Van Veen Grabs Corers Invertebrate Drift **Drift Density Drift Rate** Sample Preparation Sample Sorting **Apparatus** Reagents Procedure References Cited Faunal Survey (Qualitative Method) Numerical Assessment (Relative or Semiquantitative Method) Distribution and Abundance (Quantitative Method)

Invertebrate Drift

Permanent-Slide Method for Larvae of Chironomidae

Method for Identification of Immature Simuliidae

Permanent- and Semipermanent-Slide Method for Aquatic Acari

8 AQUATIC VERTEBRATES

Introduction

Collection

Active Sampling Gear

Seines

Bag Seine

Straight Seine

Trawls

Electrofishing

Ichthyocides

Hook and Line

Passive Sampling Gear

Investigation of Fish Kills

Preparation and Storage

References Cited

Faunal Survey (Qualitative Method)

Life History (Quantitative Method)

Methods for Investigation of Fish and Other Aquatic Vertebrate Kills

9 CELLULAR CONTENTS

Introduction

Collection

References Cited

Chlorophyll in Phytoplankton by Spectroscopy

Chlorophyll in Phytoplankton by Chromatography and Spectroscopy

Chlorophyll in Phytoplankton by High-Pressure Liquid Chromatography

Chlorophyll in Phytoplankton by Chromatography and Fluorometry

Biomass/Chlorophyll Ratio for Phytoplankton

Chlorophyll in Periphyton by Spectroscopy

Chlorophyll in Periphyton by Chromatography and Spectroscopy

Chlorophyll in Periphyton by High-Pressure Liquid Chromatography

Chlorophyll in Periphyton by Chromatography and Fluorometry

Biomass/Chlorophyll Ratio for Periphyton

Adenosine Triphosphate (ATP)

10 PRIMARY PRODUCTIVITY (PRODUCTION RATE)

Introduction

Collection

Oxygen Light- and Dark-Bottle Method for Phytoplankton

Carbon-14 Method for Phytoplankton

Oxygen Light- and Dark-Enclosure Method for Periphyton

Natural Substrates

Diel Oxygen-Curve Method for Estimating Primary Productivity

Single-Station Analysis

Two-Station Analysis

Diffusion Rate

Hydraulic-Parameter Method

Floating-Diffusion-Dome Method

Nighttime Rate-of-Change Method

References Cited

Oxygen Light- and Dark-Bottle Method for Phytoplankton Carbon-14 Light- and Dark-Bottle Method for Phytoplankton Supplemental Information

Interferences and Limitations

Toxins

Analytical Problems

Environmental Variables

Sample Containment

Respiration

Excretion

Duration of Incubation

Handling and Disposal of Radioactive Wastes

References

Oxygen Light- and Dark-Enclosure Method for Periphyton

Diel Oxygen-Curve Method for Estimating Primary Productivity and Community Metabolism in Streams

Diel Oxygen-Curve Method for Estimating Primary Productivity and Community Metabolism in Stratified Water

11 BIOASSAY

Introduction

Collection

Algal Growth Potential (AGP), Spikes for Nutrient Limitation

Supplemental Information

References Cited

PART 2: GLOSSARY

1 REFERENCES CITED

PART 3: SELECTED TAXONOMIC REFERENCES

1 GENERAL TAXONOMIC REFERENCES

Marine

Freshwater

- 2 BACTERIA AND FUNGI
- 3 ALGAE
- 4 PROTOZOA (INCLUDING FLAGELLATES)

- 5 COELENTERATA
- 6 ROTIFERA
- 7 CRUSTACEA

Smaller Crustacea Malacostraca

- 8 GASTROTRICHA
- 9 TARDIGRADA
- 10 MACROPHYTES
- 11 PORIFERA
- 12 TURBELLARIA
- 13 NEMERTEA (RHYNCHOCOELA)
- 14 NEMATODA (NEMATA)
- 15 GORDIIDA
- 16 BRYOZOA
- 17 ANNELIDA
- 18 INSECTA

Coleoptera

Collembola

Diptera

Chironomidae

Culicidae

Simuliidae

Tipulidae and Tabanidae

Ephemeroptera

Hemiptera

Hymenoptera

Lepidoptera

Megaloptera and Neuroptera

Odonata

Orthoptera Plecoptera Trichoptera

- 19 ACARI
- 20 MOLLUSCA
- 21 VERTEBRATA Marine Freshwater

U.S. Geological Survey. 1989. Methods for Determination of Inorganic Substances in Water and Fluvial Sediments. 3rd ed. In Techniques of Water-Resources Investigations of the United States Geological Survey. Edited by M.J. Fishman and L.C. Friedman. U.S. Department of the Interior, Geological Survey, Denver, CO. pp. 642.

Media in which methods can be used:

✓ Water

✓ Sediment

Biota

Keywords:

Water quality, sediment quality, QA/QC, sampling, metals, inorganics, oxygen

demand, turbidity, nutrients

Abstract

A series of manuals on techniques describes methods used by the Geological Survey for planning and conducting water-resources investigations. The material is arranged under major subject headings called books and is further subdivided into sections and chapters. Book 5 is on laboratory analyses, Section A is on water. The unit of publication, the chapter, is limited to a narrow field of subject matter.

Chapter A1 of the laboratory manual contains methods used by the Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining dissolved, total recoverable, and total concentrations of constituents in watersuspended sediment samples, and recoverable and total constituents in samples of bottom material. Essential definitions are included in the introduction to the manual, along with a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the wateranalysis laboratory is discussed, including accuracy and precision of analyses, the use of standard reference water samples, and the operation of an effective quality assurance program. Methods for sample preparation and pretreatment are given also.

The analytical methods are arranged according to the analytical technique employed for the determination: atomic absorption spectrometric, calculation, colorimetric, electrometric, gravimetric, and titrimetric methods. More than 200 methods are given for the determination of 69 different inorganic constituents and physical properties of water, suspended sediment, and bottom material, and many of the methods given are identical except for the preparation step, which varies with the particular type of sample that is taken for analysis. Included in the manual are many automated methods, particularly the colorimetric methods that make use of the Technicon AutoAnalyzer system to automate the determination from sample introduction to final concentration readout.

A brief discussion of the principles of the analytical technique involved and its particular application to water analysis proceeds each group of analytical methods. For each method given, the general topics covered are application, principle of the method, interferences, apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available.

[extracted from document]

Contact: (303) 236-7476

- 1 ABSTRACT
- 2 INTRODUCTION
- 3 QUALITY CONTROL
- 4 LABORATORY EQUIPMENT AND TECHNIQUES
- 5 REFERENCES
- S SAMPLE PREPARATION AND PRETREATMENT
- 7 SAMPLE PREPARATION AND PRETREATMENT METHODS

Extraction Procedure, Bottom Material

Extraction Procedures, Water-Suspended Sediment Mixture

Percent Moisture, Total, in Bottom Material

Sample Preparation, Bottom Material

Subsampling, Bottom Material, Coring

Subsampling, Bottom Material, Splitting

8 ATOMIC ABSORPTION SPECTROMETRY

Instrumental Principles

Analytical Procedures

Direct

Chelation-Extraction

Standard-Addition

Internal-Standard

Interferences

Ionization Effects

Chemical Effects

Matrix Effects

Spectral Line Effects

Background Absorption

Flameless Atomic Absorption Spectrometric Techniques

Automation Techniques of Atomic Absorption Spectrometers

References

9 AUTOMATED ATOMIC ABSORPTION SPECTROMETRIC METHODS

Metals, Dissolved

Metals, Total Recoverable

10 ATOMIC ABSORPTION SPECTROMETRIC METHODS

Aluminum, Dissolved

Aluminum, Recoverable From Bottom Material

Aluminum, Total Recoverable

Antimony, Dissolved

Antimony, Total in Bottom Material

Arsenic, Dissolved

Arsenic, Total in Bottom Material

Arsenic, Total

Barium, Dissolved

Barium Recoverable From Bottom Material

Barium, Total Recoverable

Beryllium, Dissolved

Beryllium, Recoverable From Bottom Material

Beryllium, Total Recoverable

Cadmium, Dissolved

Cadmium, Recoverable From Bottom Material

Cadmium, Total Recoverable

Calcium, Dissolved

Calcium, Recoverable From Bottom Material

Calcium, Total Recoverable

Chromium, Dissolved

Chromium, Hexavalent, Dissolved

Chromium, Recoverable From Bottom Material

Chromium Total Recoverable

Cobalt, Dissolved

Cobalt, Recoverable From Bottom Material

Cobalt, Total Recoverable

Copper Dissolved

Copper, Recoverable From Bottom Material

Copper, Total Recoverable

Iron, Dissolved

Iron, Recoverable From Bottom Material

Iron, Total Recoverable

Lead, Dissolved

Lead, Recoverable From Bottom Material

Lead, Total Recoverable

Lithium, Dissolved

Lithium, Recoverable From Bottom Material

Lithium, Total Recoverable

Magnesium, Dissolved

Magnesium, Recoverable From Bottom Material

Magnesium, Total Recoverable

Manganese, Dissolved

Manganese, Recoverable From Bottom Material

Manganese, Total Recoverable

Mercury, Dissolved

Mercury, Recoverable From Bottom Material

Mercury, Total Recoverable

Molybdenum, Dissolved

Molybdenum, Recoverable From Bottom Material

Molybdenum, Total Recoverable

Nickel, Dissolved

Nickel, Recoverable From Bottom Material

Nickel, Total Recoverable

Potassium, Dissolved

Potassium, Recoverable From Bottom Material

Potassium, Total Recoverable

Selenium, Dissolved

Selenium, Total in Bottom Material

Selenium, Total

Silica, Dissolved

Silver, Dissolved

Silver, Total Recoverable

Sodium, Dissolved

Sodium, Recoverable From Bottom Material

Sodium, Total Recoverable

Strontium, Dissolved

Strontium, Recoverable From Bottom Material

Strontium, Total Recoverable

Tin, Dissolved

Tin, Total Recoverable

Zinc, Dissolved

Zinc, Recoverable From Bottom Material

Zinc, Total Recoverable

11 CALCULATION METHODS

Carbon Dioxide, Dissolved

Hardness

Hardness, Noncarbonate

Sodium Adsorption Ratio

Sodium, Percent

Solids, Sum of Constituents, Dissolved

12 COLORIMETRY

Instrumental Principles

Sensitivity

Interferences

Subtraction of Natural-Color Absorbance

Direct Compensation

Bleaching

Removal of Color Material

Automated Analysis

References

13 COLORIMETRIC METHODS

Aluminum

Arsenic

Boron

Bromide

Chloride

Chromium

Cyanide

Fluoride

lodide

Iron

Nitrogen, Ammonia Plus Organic

Nitrogen, Ammonia, Dissolved

Nitrogen, Ammonia, Total in Bottom Material

Nitrogen, Ammonia, Total

Nitrogen, Nitrate, Dissolved

Nitrogen Nitrite, Dissolved

Nitrogen, Nitrite, Total

Nitrogen, Nitrite Plus Nitrate, Dissolved

Nitrogen, Nitrite Plus Nitrate, Total in Bottom Material

Nitrogen, Nitrite Plus Nitrate, Total, Colorimetric, Cadmium Reduction-Diazotization

Oxygen Demand, Chemical (COD), Total

Phosphorus, Dissolved

Phosphorus, Hydrolyzable, Dissolved

Phosphorus, Organic, Dissolved

Phosphorus, Organic, Total

Phosphorus, Orthophosphate, Dissolved

Phosphorus, Orthophosphate, Total

Phosphorus, Total in Bottom Material

Silica, Dissolved

Vanadium, Dissolved

14 ELECTROMETRY

Polarography

Principles of Determination

Interferences

Specific Conductance

рΗ

Ion-Selective Electrodes

References

15 ELECTROMETRIC METHODS

Acidity, Electrometric Titration

Alkalinity, Electrometric Titration

Color, Electrometric, Visual Comparison

Fluoride, Dissolved

Fluoride, Total

Nitrogen, Ammonia, Dissolved

Nitrogen, Ammonia, Total

Oxygen, Dissolved

рН

Specific Conductance

Turbidity, Nephelometric

16 GRAVIMETRY

Principles

Analytical Balance

Accuracy

17 GRAVIMETRIC METHODS

Barium, Dissolved

Density

Solids, Volatile on Ignition, Dissolved

Solids, Volatile on Ignition, Suspended

Solids, Volatile on Ignition, Total in Bottom Material

Solids, Nonvolatile on Ignition, Dissolved

Solids, Nonvolatile on Ignition, Suspended

Solids, Nonvolatile on Ignition, Total

Solids, Residue on Evaporation at 105° C, Dissolved

Solids, Residue at 105° C, Suspended

Solids, Residue on Evaporation at 105° C, Total

Solids, Residue on Evaporation at 180° C, Dissolved

18 TITRIMETRY

Principles

Standard Solutions

Factor-Weight Computations

Automated Titrations

19 TITRIMETRIC METHODS

Bromide, Dissolved

Chloride, Dissolved

Hardness, Titrimetric

lodide, Dissolved

Nitrogen, Ammonia Plus Organic, Total in Bottom Material

Nitrogen, Total in Bottom Material

Oxygen Demand, Biochemical, 5-Day at 20°C

Oxygen Demand, Chemical, Total in Bottom Material

Oxygen Demand, Chemical, Total

Oxygen, Dissolved

Sulfate, Dissolved

Sulfide, Total

20 INDEX OF METHODS

		•			
					•
		_			,
		-			
				,	
				1	
				t	
				1	
	•				
				i	
		,			
			· · · · · · · · · · · · · · · · · · ·		
			i ji		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
	• 1				
	• 1				
	. ·				

Reference List

APHA. 1970. Recommended Procedures for the Examination of Sea Water and Shellfish. 4th. ed. American Public Health Association, Inc., New York, NY. Reference No. 001.

APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th. ed. Edited by A. E. Greenberg, L. S. Clesceri and A. D. Eaton. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC. Reference No. 002.

ASTM. 1993. Annual Book of ASTM Standards, 1993. Water and Environmental Technology. Vol 11.04. Pesticides; Resource Recovery; Hazardous Substances and Oil Spill Responses; Waste Management; Biological Effects. American Society for Testing and Materials, Philadelphia, PA. Reference No. 003.

ASTM. 1994. Annual Book of ASTM Standards, 1994. Water and Environmental Technology. 2 vols: Water (I) and Water (II). American Society for Testing and Materials, Philadelphia, PA. Reference No. 004.

Calif. State Water Resources Control Board. 1990. California Ocean Plan. Water Quality Control Plan for Ocean Waters of California. State of California, State Water Resources Control Board, Sacramento, CA. Pp. 23.

Reference No. 005.

Calif. State Water Resources Control Board. 1990. *Procedures Manual for Conducting Toxicity Tests Developed by the Marine Bioassay Project*. Prepared by B. Anderson et al., Water Resources Control Board, State of California, Sacramento, CA. Pp. 121. Report No. 90-10WQ. Reference No. *006*.

Chesapeake Bay Program. 1991. Chesapeake Bay Coordinated Split Sample Program Implementation Guidelines Revision 3. U.S. Environmental Protection Agency, Chesapeake Bay Program Office, Annapolis, MD. CBP/TRS 58/91 Revision 3. Reference No. 007.

Chesapeake Bay Program. 1992. *Chesapeake Bay Program Data Management Plan*. U.S. Environmental Protection Agency, Chesapeake Bay Program Monitoring Subcommittee, Annapolis, MD. Pp. 297.

Reference No. 008.

Chesapeake Bay Program. 1992. Guidance for the Analysis of Water Quality Trends in Chesapeake Bay - Draft. Prepared by the Data Analysis Workgroup of the Chesapeake Bay Program Monitoring Subcommittee for the State of Maryland, Department of the Environment, Baltimore, MD.

Reference No. 009.

Chesapeake Bay Program. 1993. Guide to Using Chesapeake Bay Program Water Quality Monitoring Data. Chesapeake Bay Program, Baltimore, MD. CBP/TRS 78/92. Reference No. 010.

Chesapeake Bay Program. 1994. Recommended Guidelines for Sampling and Analysis in the Chesapeake Bay Monitoring Program. U.S. Environmental Protection Agency, Region 3, Chesapeake Bay Program Office, Annapolis, MD. Draft report.

Reference No. 011.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York, NY. Reference No. 012.

Holme, N.A., and A.D. McIntyre. 1984. *Methods for the Study of Marine Benthos*. Blackwell Scientific Publishers, Oxford. Reference No. *013*.

Ingersoll, C.G., and M.K. Nelson. 1990. Testing Sediment Toxicity with *Hyalella azteca* (Amphipoda) and *Chironomus riparius* (Diptera). In *Aquatic Toxicology and Risk Assessment:* 13th Volume, ASTM STP 1096. Eds: W.G. Landis and W.H. van der Schalie. American Society for Testing and Materials, Philadelphia, PA. Pp. 93-109. Reference No. 014.

Marshack, Jon B. 1991. A Compilation of Water Quality Goals. California Regional Water Quality Control Board, Central Valley Region, Sacramento, CA. Staff Report. Reference No. 015.

Maryland Department of the Environment. 1993. Guidance for the Analysis of Water Quality Trends in Chesapeake Bay. Prepared by the Maryland Department of the Environment (by R. Eskin et al.) for the Monitoring Subcommittee of the Chesapeake Bay Program, Baltimore, MD. Pp. 46.

Reference No. 016.

Mudroch, A., and S.D. MacKnight. 1991. *Handbook of Techniques for Aquatic Sediments Sampling*. CRC Press, Boca Raton, FL. Pp. 210. Reference No. 017.

Mueller, W., and D. Smith. 1992. Compilation of EPA's Sampling and Analytical Methods. Edited by L. H. Keith. Lewis Publishers, Chelsea, MI. Reference No. 018.

National Parks Service. 1991. *Plant Toxicity Testing with Sediment and Marsh Soils*. Prepared by G. Walsh, US Department of the Interior, National Parks Service, Water Resources Division, Fort Collins, CO. Pp. 133. Technical Report NPS/NRWRD/NRTR-91/03. Reference No. *019*.

NOAA. 1986. National Status and Trends Program for Marine Environmental Quality Benthic Surveillance Project: Cycle III Field Manual. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, MD. Pp. 32. Technical Memorandum NOS OMA 28.

Reference No. 020.

NOAA. 1987. National Status and Trends Program for Marine Environmental Quality Benthic Surveillance Project: Specimen Bank Project: Field Manual. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, MD. Pp. 43. Technical Memorandum NOS OMA 37.

Reference No. 021.

NOAA. 1988. Standard Analytical Procedures of the NOAA National Analytical Facility, 1988. New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA. NOAA Technical Memorandum NMFS F/NWC-153. Reference No. 022.

NOAA. 1992. Standard and Reference Materials for Marine Science. 3rd ed. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, MD. Technical Memorandum NOS ORCA 68. Reference No. 023.

NOAA. 1993. Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992, Volumes I-IV. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, MD. NOAA Technical Memorandum NOS ORCA 71. Reference No. 024.

NOAA. 1994. Use of Standards and Reference Materials in the Measurement of Chlorinated Hydrocarbon Residues - Chemistry Workbook. Prepared by T.L. Wade and A.Y. Cantillo for the National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, Silver Spring, MD. Technical Memorandum NOS ORCA 77. Reference No. 025.

Parsons, T. R. et al. 1984. A Manual for Chemical and Biological Methods for Seawater Analysis. 1st. ed. Pergamon Press, Toronto. Reference No. 026.

Plumb, R. H., Jr. 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY., for U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Technical Report EPA/CD-81-1. Reference No. 027.

PTI Environmental Services. 1989. Data Validation Guidance Manual for Selected Sediment Variables, Edited Draft Report. Prepared by PTI Environmental Services for the Washington Department of Ecology, Sediment Management Unit, Olympia, WA. Reference No. 028.

PTI Environmental Services. 1989. Puget Sound Dredged Disposal Analysis Guidance Manual; Data Quality Evaluation for Proposed Dredged Material Disposal Projects. Prepared by PTI Environmental Services for the Washington Department of Ecology, Sediment Management Unit, Olympia, WA.

Reference No. 029.

Puget Sound Estuary Program. 1991. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. U.S. Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle, WA.

Reference No. 030.

San Francisco Estuary Institute. 1994. Quality Assurance Project Plan for the Regional Monitoring Program for Toxic Contaminants in the San Francisco Estuary. San Francisco Estuary Institute (previously Aquatic Habitat Institute), Richmond, CA. Pp. 75. Reference No. 031.

San Francisco Estuary Project. 1991. *Quality Assurance in Environmental Analysis Applied to the San Francisco Estuary*. Prepared by the Aquatic Habitat Institute for the San Francisco Estuary Project, Oakland, CA. Pp. 72. Reference No. *032*.

State of Maine DEP. 1987. Methods for Biological Sampling and Analysis of Maine's Waters. State of Maine Department of Environmental Protection, Augusta, ME. Pp. 19. Reference No. 033.

Texas Parks and Wildlife Department. 1989. Commercial Harvest Field Operations Manual. Texas Parks and Wildlife Department, Fisheries and Wildlife Division, Coastal Fisheries Branch, Austin, TX.

Reference No. 034.

Texas Parks and Wildlife Department. 1993. Marine Resource Monitoring Operations Manual. Texas Parks and Wildlife Department, Fisheries and Wildlife Division, Coastal Fisheries Branch, Austin, TX.

Reference No. 035.

Texas Parks and Wildlife Department. 1993. Marine Sport Harvest Monitoring Operations Manual. Texas Parks and Wildlife Department, Fisheries and Wildlife Division, Coastal Fisheries Branch, Austin, TX.

Reference No. 036.

Texas Water Commission. 1993. Water Quality Monitoring Procedures Manual. Water Quality Monitoring Team, Texas Water Commission, Austin, TX. Pp. 262. Draft. Reference No. 037.

USACE. 1991. Assessing Bioaccumulation in Aquatic Organisms Exposed to Contaminated Sediments. By J. Clarke and V. McFarland, US Army Corps of Engineers, Waterways Experiment Station, Environmental Laboratory, Vicksburg, MS. Pp. 82. Miscellaneous Paper D-91-2. Reference No. 038.

USAEWES. 1989. Quality Assurance Guidelines for Organic Analysis. US Army Corps of Engineers, Environmental Laboratory, Waterways Experiment Station, Vicksburg, MS. Technical Report EL-89-18. Reference No. 039.

USEPA. 1978. Environmental Monitoring Series: Quality Assurance Guidelines for Biological Testing. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Las Vegas, NV. Pp. 475. EPA 600/4-78-043. Reference No. 040.

USEPA. 1978. Microbiological Methods for Monitoring the Environment - Water and Wastes. Edited by: R.H. Bordner, J.A. Winter, and P.V. Scarpino. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, OH. Pp. 337. EPA 600/8-78-017. Reference No. 041.

USEPA. 1978. Phytoplankton Sampling in Qualitative Baseline and Monitoring Programs. U.S. EPA, Office of Research and Development, Corvallis Environmental Research Laboratory, Newport, OR. EPA 600/3-78-025. Reference No. 042.

USEPA. 1979. Handbook for Analytical Quality Control in Water and Wastewater Laboratories. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH. EPA-600/4-79-019. Reference No. 043.

USEPA. 1983. Methods for Chemical Analysis of Water and Wastes. 3rd. ed. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA 600/4-79-020.

Reference No. 044.

USEPA. 1985. Bioaccumulation Monitoring Guidance: 3. Recommended Analytical Detection Limits. U.S. Environmental Protection Agency, Office of Water, Washington, DC. Pp. 23. EPA 503/6-90-001.

Reference No. 045.

USEPA. 1985. Summary of U.S. EPA-Approved Methods, Standard Methods, and Other Guidance for 301(h) Monitoring Variables. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. Pp. 16. EPA 503/4-90-002. Reference No. 046.

USEPA. 1985. Test Methods for Escherichia coli and Enterococci in Water by the Membrane Filter Procedure. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH. Pp. 30. EPA 600/4-85/076. Reference No. 047.

USEPA. 1986. Analytical Methods for U.S. EPA Priority Pollutants and 301(h) Pesticides in Estuarine and Marine Sediments. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. EPA 503/6-90-004.

Reference No. 048.

USEPA. 1986. Bioaccumulation Monitoring Guidance: 4. Analytical Methods for U.S. EPA Priority Pollutants and 301(h) Pesticides in Tissues From Estuarine and Marine Organisms. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. EPA 503/6-90-002.

Reference No. 049.

USEPA. 1986. *Quality Criteria for Water 1986*. United States Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA 440/5-86-001. Reference No. *050*.

USEPA. 1987. Bioaccumulation Monitoring Guidance: 1. Selection of Target Species and Review of Available Bioaccumulation Data. U.S. Environmental Protection Agency, Office of Water, Washington, DC. Pp. 52. EPA/420-86-005. Reference No. 051.

USEPA. 1987. Bioaccumulation Monitoring Guidance: 5. Strategies for Sample Replication and Compositing. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. Pp. 51. EPA 430/09-87-003. Reference No. 052.

USEPA. 1987. Guidance for Conducting Fish Liver Histopathology Studies During 301(h) Monitoring. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. Pp. 166. EPA 430/09-87-004. Reference No. 053.

USEPA. 1987. Guidance for Sampling of and Analyzing for Organic Contaminants in Sediments. U.S. Environmental Protection Agency, Office of Water, Regulation and Standards, Criteria and Standards Division, Washington, DC. Pp. 80. EPA 440/4-87-010. Reference No. 054.

USEPA. 1987. Quality Assurance/Quality Control (QA/QC) for 301(h) Monitoring Programs: Guidance on Field and Laboratory Methods. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC. EPA 430/9-86-004. Reference No. 055.

USEPA. 1987. Recommended Biological Indices for 301(h) Monitoring Programs. U.S. Environmental Protection Agency, Marine Operations Division, Office of Marine and Estuarine Protection, Washington, DC. Pp. 17. EPA 430/9-86-002. Reference No. 056.

USEPA. 1988. Guide for Preparation of Quality Assurance Project Plans for the National Estuary Program - Interim Final. U.S. Environmental Protection Agency, Office of Water, Office of Marine and Estuarine Protection, Washington, DC. EPA 556/2-88-001. Reference No. 057.

USEPA. 1988. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Edited by C. I. Weber et al. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA-600/4-87/028. Reference No. 058.

USEPA. 1989. Compendium of Methods for Marine and Estuarine Environmental Studies. U.S. Environmental Protection Agency, Office of Water, Office of Marine and Estuarine Protection, Washington, DC. EPA 503/2-89/001. Reference No. 059.

USEPA. 1989. *Guidance Manual: Bedded Sediment Bioaccumulation Tests*. U.S. Environmental Protection Agency, Bioaccumulation Team, Pacific Ecosystems Branch, Environmental Research Laboratory, Newport, OR. Pp. 232. EPA/600/X-89/302. ERLN-N111. Reference No. *060*.

USEPA. 1989. *Methods Manual for Perdido Bay Citizens Monitoring Program*. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Gulf Breeze, FL. Pp. 28. EPA/600/4-89/030. Reference No. *061*.

USEPA. 1989. *QA/QC Plan for Perdido Bay Florida-Alabama Citizens Monitoring Program*. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Gulf Breeze, FL. Pp. 17. Reference No. *062*.

USEPA. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. U.S. Environmental Protection Agency, Office of Water, Washington, DC. Pp. 185. EPA/444/4-89-001. Reference No. 063.

USEPA. 1989. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 2nd. ed. Edited by C. I. Weber et al. U.S. Environmental Protection Agency, Office of Research and Development, Office of Modeling, Monitoring Systems, and Quality Assurance, Environmental Monitoring Systems Laboratory, Cincinnati, OH. EPA/600/4-89/001.

Reference No. 064.

USEPA. 1990. Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish. U.S. EPA, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA 600/3-90-022. Reference No. 065.

USEPA. 1990. Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish. U.S. EPA, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA 600/3-90-023. Reference No. 066.

USEPA. 1990. Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. Pp. 268. EPA/600/4-90/030. Reference No. 067.

USEPA. 1990. Volunteer Water Monitoring: A Guide For State Managers. U.S. Environmental Protection Agency, Office of Water, Washington, DC. Pp. 78. EPA 440/4-90-010. Reference No. 068.

USEPA. 1991. Biological Criteria: Guide to Technical Literature. U.S. Environmental Protection Agency, Office of Water, Washington, DC. Pp. 128. EPA-440/5-91-004. Reference No. 069.

USEPA. 1991. Methods for Aquatic Toxicity Identification Evaluations, Phase I Toxicity Characterization Procedures, Second Edition. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA/600/6-91/003. Reference No. 070.

USEPA. 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th. ed. Edited by C. I. Weber. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. EPA-600/4-90-027. Reference No. 071.

USEPA. 1991. *Methods for the Determination of Metals in Environmental Samples*. U.S. Environmental Protection Agency, Environmental Monitoring System Laboratory, Office of Research and Development, Cincinnati, OH. EPA 600-4-91-010. Reference No. *072*.

USEPA. 1991. A Project Manager's Guide to Requesting and Evaluating Chemical Analyses. Prepared by PTI Environmental Services, Bellevue, WA for U.S. Environmental Protection Agency, Region 10, Puget Sound Estuary Program, Seattle, WA. EPA 910/9-90-24. Reference No. 073.

USEPA. 1991. *Volunteer Lake Monitoring: A Methods Manual*. Prepared by J. Simpson for U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Assessment and Watershed Protection Division, Washington, DC. Pp. 129. EPA 440/4-91-002. Reference No. *074*.

USEPA. 1992. Consumption Surveys for Fish and Shellfish. U.S. Environmental Protection Agency, Office of Water and Office of Science and Technology, Washington, DC. Pp. 60. EPA 822/R-92-001. Reference No. 075.

USEPA. 1992. Environmental Monitoring Methods Index, Version 1.0. U.S. Environmental Protection Agency, Environmental Monitoring Management Council, Washington, DC. 112 pp. + three software diskettes. NTIS PB92-503093. Reference No. 076.

USEPA. 1992. Field Operations and Safety Manual: EMAP-Estuaries 1992 Virginian Province. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Washington, DC. Preliminary Draft. Pp. 210. EPA/600/x92/xxx. Reference No. 077.

USEPA. 1992. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Samples. U.S. Environmental Protection Agency, Environmental System Laboratory, Office of Research and Development, Cincinnati, OH. EPA 600/R-92/121. Reference No. 078.

USEPA. 1992. Monitoring Guidance for the National Estuary Program, Final. U.S. Environmental Protection Agency; Office of Water; Office of Wetlands, Oceans, and Watersheds, Ocean and Coastal Protection Division, Washington, DC. EPA 503/8-91-002. Reference No. 079.

USEPA. 1992. Recommended Analytical Techniques and Quality Assurance/Quality Control Guidelines for the Measurement of Organic and Inorganic Analytes in Marine Sediment and Tissue Samples. Draft. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Narragansett, RI. Reference No. 080.

USEPA. 1992. Sediment Classification Methods Compendium. U.S. Environmental Protection Agency, Office of Water (WH-556), Washington, DC. EPA 823-R-92-006. Reference No. 081.

USEPA. 1992. Standard Operating Procedures and Field Methods Used for Conducting Ecological Risk Assessment Case Studies. Prepared for Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San Diego, CA, by U.S. Environmental Protection Agency, Environmental Research Laboratory, Narragansett, RI. Technical Document 2296. 416 pp. + appendices.

Reference No. 082.

USEPA. 1992. Synthesis of Methods to Predict Bioaccumulation of Sediment Pollutants. U.S. Environmental Protection Agency, Bioaccumulation/Stratozone Team, Pacific Ecosystems Branch, Environmental Research Laboratory, Newport, OR. Research Report. Reference No. 083.

USEPA. 1993. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water, Washington, DC. EPA 823-R-93-002. Reference No. 084.

USEPA. 1993. Laboratory Methods Manual - Estuaries. Environmental Monitoring and Assessment Program. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. Pp. 289. EPA/600/4-91/024. Reference No. 085.

USEPA. 1993. Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA/600/R-92/080. Reference No. 086.

USEPA. 1993. Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Duluth, MN. EPA/600/R-92/081. Reference No. 087.

USEPA. 1993. Methods for the Determination of Inorganic Substances in Environmental Samples. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH. EPA/600/R-93/100. Reference No. 088.

USEPA. 1993. *QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations Phase 1 - Chemical Evaluations*. Environmental Protection Agency, Office of Water, Office of Science and Technology, Standards & Applied Science Division (WH-585), Washington, DC. Reference No. *089*.

USEPA. 1993. *Volunteer Estuary Monitoring: A Methods Manual*. U.S. Environmental Protection Agency, Office of Water, Office of Wetlands, Oceans, and Watersheds, Washington, DC. EPA 842-B-93-004. Reference No. *090*.

USEPA. 1994. CWA Section 403: Procedural and Monitoring Guidance. U.S. Environmental Protection Agency; Office of Water; Office of Wetlands, Oceans, and Watersheds, Ocean and Coastal Protection Division, Washington, DC. EPA 842-B-94-003. Reference No. 091.

USEPA. 1994. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume II: Risk Assessment and Fish Consumption Limits. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water, Washington, DC. EPA 823–B–94–004.

Reference No. 092.

USEPA. 1994. Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods. U.S. Environmental Protection Agency, Office of Science and Technology, Washington, DC. EPA 600/R-94/025. Reference No. 093.

USEPA. 1994. Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN. EPA 600/R-94/024. Reference No. **094**.

USEPA. 1994. National Directory of Volunteer Environmental Monitoring Programs. 4th. ed. U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC. EPA 841-B-94-001. Reference No. 095.

USEPA, and USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Manual. U.S. Environmental Protection Agency, Office of Water and Department of the Army, U.S. Army Corps of Engineers, Washington, DC. Pp. 288. EPA-503/8-91/001. Reference No. 096.

USEPA and USACE. 1994. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. - Testing Manual (Draft): Inland Testing Manual. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC and Department of the Army, U.S. Army Corps of Engineers, Washington, DC. EPA-823-B-94-002. Reference No. 097.

USFDA. 1990. National Shellfish Sanitation Program Manual of Operations Part 1 Sanitation of Shellfish Growing Areas 1990 Revision. U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Cooperative Programs, Shellfish Sanitation Branch, Washington, DC. Pp. 136. Reference No. 098.

USGS. 1987. Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples. In *Techniques of Water-Resources Investigations of the United States Geological Survey*. Edited by L.J. Britton and P.E. Greeson. Pp. 375. U.S. Department of the Interior, Geological Survey, Denver, CO. Reference No. 099.

USGS. 1989. Methods for Determination of Inorganic Substances in Water and Fluvial Sediments. 3rd. ed. In *Techniques of Water-Resources Investigations of the United States Geological Survey*. Edited by M.J. Fishman and L.C. Friedman. Pp. 642. U.S. Department of the Interior, Geological Survey, Denver, CO. Reference No. 100.

			·
		; ;	
		. :	
		: : .	
		1	
			•

Index

▲	Reference
\mathbf{A}	Number
acenaphthalene	20 15 19 10 50 76
acenaphthylene	39, 43, 40, 49, 30, 70 30, 45, 49, 40, 50, 76
acrolein	20, 45, 40, 49, 50, 76
acrylonitrile	39, 43, 48, 49, 30, 76 20, 45, 48, 40, 50, 76
aldrin	39, 43, 46, 49, 30, 76 30, 45, 49, 40, 50, 76
algae	2 59 64 99
aluminium	
ammonium	5 15 20 50 92
amphibians	3, 13, 30, 30, 82
anthracene	
antimony	<i>39</i> , 43, 48, 49, 30, 76
arsenic	45, 48, 49, 50, 72, 76
ashestos	49, 50, 72, 76, 78, 84
asbestos	15, 30, 45, 50, 76
\mathbf{B}	
bacteria, coliform	30, 37, 41, 46, 55, 82
bacteria, Enterococci	15, 30, 41, 46, 55, 82
barium	15, 30, 50, 72, 76
benthic infauna	50, 55, 63, 79, 82, 85
benzene	39, 45, 48, 49, 50, 76
benzidine	39, 45, 48, 49, 50, 76
beryllium	45, 48, 49, 50, 72, 76
bioaccumulation	1, 52, 55, 57, 60, 65,
66, 79, 8	82, 83, 91, 94, 96, 97
bioassays, see toxicity/bioassays	, , ,
bis(chloroethoxy)methane	39, 45, 48, 49, 50, 76
bis(chloroethyl)ether	39, 45, 48, 49, 50, 76
bis(chloroisoprolyl)ether	39, 45, 48, 49, 50, 76
bis(chloromethyl)ether	30, 45, 48, 49, 50, 76
boron	15, 50, 72, 76
bromodichloromethane	39, 45, 48, 49, 50, 76
bromomethane	39, 45, 48, 49, 50, 76
bromophenyl phenyl ether	30, 45, 48, 49, 50, 76
	•

C							
cadmium	2	, 5, 15, 24, 2	7, 30, 31,	45, 48	, 49, 50	0, 72, 76,	, 78, 84
calcium					. 15, 2°	7, 30, 50,	, 72, 76
carbon						27,	, 30, 78
carbon, organic . 2, 4, 11	1, 15, 24, 26, 27, 28,	30, 31, 43, 4	4, 46, 54	, 55, 60	, 76, 79	9, 85, 91,	, 96, 97
chlordane				15	, 30, 4:	5, 48, 49,	, 50, 76
chlordene			15	, 30, 39	, 45, 47	8, 49, 50	, 76, 84
chlorobenzene	***************************************			. 15, 30	, 39, 4	5, 48, 49	, 50, 76
chloroethane			••••••	. 15, 30	, 39, 4	5, 48, 49	, 50, 76
chloromethane				. 15, 30	, 39, 4	5, 48, 49	, 50, 76
chloronaphthalene	,		•••••	. 15, 30	, 39, 4	5, 48, 49	, 50, 76
chlorophenol				. 15, 30	, 39, 4	5, 48, 49	, 50, 76.
chlorophyll		3, 11, 26, 3	0, 31, 42	, 46, 55	, 59, 7	8, 79, 82	, 90, 91
chlororethyl vinyl ether	***************************************			. 15, 30	, 39, 4	5, 48, 49	, 50, 76
chlororphenyl phenyl et	her			. 15, 30	, 39, 4	5, 48, 49	, 50, 76
chromium		2, 5, 15, 24, 2	27, 30, 31	, 45, 48	, 49, 5	0, 72, 76	, 78, 84
chrysene			• • • • • • • • • • • • • • • • • • • •	. 15, 30	, 39, 4	5, 48, 49	7, 50, 76
cobalt				15	, 30, 4	5, 50, 72	7, 76, 78
color			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		15, 55
community, see populat	tion/community						
conductivity, see salinit	у			4 4	. 40 5	0 70 70	7001
copper		2, 5, 15, 24, 2	27, 30, 31	., 45, 48	3, 49, 5	0, /2, /6), /8, 84
cresol	***************************************			13	51 55	5, 48, 45	7, 50, 70 95 100
current and flow			4, 24,	34, 37,	31, 33), 68, 79,	85, 100
cyanide			• • • • • • • • • • • • • • • • • • • •	2, 5), 15, 3	60, 45, 50), /0,88
_						1	
D						1 2	
data analysis	3, 4, 5, 7, 8, 9,	10, 12, 15, 1	6, 24, 25	, 28, 29	, 30, 3	1, 32, 33	, 34, 35,
•	36, 37, 38, 39, 41,	42, 43, 44, 4	8, 49, 50	, 52, 53	, 55, 5	6, 57, 58	, 60, 62,
	64 67, 69, 71, 72,	. 73. 74. 75, ʻ	77, 79, 82	2, 83, 84	4, 87, 8	38, 89, 92	2, 96, 97
DDT and metabolites			15, 25	5, 30, 39	9, 45, 4	18, 49, 50	0, 76, 84
denth					4	24, 31, 3	1, 19, 91
dichlorobenzene				15, 30	J, 39, ²	15, 48, 45) , 30, 70
dichlorobenzidine					15, 3	30, 39, 4:	5, 50, 70
dichlorodifluoromethar	ne			2, 15, 30	0, 39, 4	15, 48, 49	9, 30, 70
dichloroethane				2, 15, 3	0, 39, 4	45, 48, 4 <u>9</u>	9, 50, 76
dichloroethene				2, 15, 3	0, 39, 4	15, 48, 49	9, 50, 76
dichloromethane				2, 15, 3 ¹	0, 39, 4	45, 48, 43	9, 30, 70
dichlorophenol				15, 3	0, 39, 4	45, 48, 49	9, 30, 76
dichloropropane				2, 15, 3	0, 39, 4	45, 48, 4	9, 30, 76
dichloropropene				2, 15, <i>3</i>	0, 39, 4	45, 48, 4	9, 30, 70
dialdrin				5, 30, 3	9, 45, 4	48, 49, 50	0, 76, 84

dieldrin 15, 30, 39, 45, 48, 49, 50, 76, 84

	Reference Number
dimethyl phenol	45, 48, 49, 50, 76
dinitrophenol	45, 48, 49, 50, 76
dinitrotoluene	45, 48, 49, 50, 76
dioxins/furans	
diphenylhydrazine 15, 30, 39,	45, 48, 49, 50, 76
dissolved oxygen	49, 50, 55, 61, 74,
76,	77, 79, 82, 90, 91
dredging	96, 97
\mathbf{E}	
endosulfan	48, 49, 50, 76, 84
endrin	45, 48, 49, 50, 76
ethyl benzene	45, 48, 49, 50, 76
	,,,,
\mathbf{F}	
fish	58 63 64 79 82
fluoranthene	45 48 49 50 76
fluorene	45, 48, 49, 50, 76
G grain size 4, 11, 24, 27, 28, 29, 30, 31, 46, 55, 60, 76, 79,	82, 85, 91, 96, 97
H	
habitat	30 63
halogenated aliphatic hydrocarbons	45, 48, 49, 50, 76
halogenated ethers	45, 48, 49, 50, 76
heptachlor, pesticide	48, 49, 50, 76, 84
hexachlorobenzene	48, 49, 50, 76, 84
hexachlorobutadiene	45, 48, 49, 50, 76
hexachlorocyclohexane	45, 48, 49, 50, 76
hexachlorocyclopentadiene	45, 48, 49, 50, 76
I-J-K	
inorganic constituents	4, 45, 46, 48, 49.
50, 55, 76, 78, 79, 82, 84, 88, 9	
iron	27, 30, 50, 72, 76
isophorone	15, 48, 49, 50, 76

	Number
${f L}$	
lead	, 72, 76, 78, 84
lindane 15	, 30, 45, 50, 76
lithium	50, 72, 76
	į į
\mathbf{M}	:
macroinvertebrates	, 64, 67, 82, 85
magnesium27	, 30, 45, 72, 76
mammals	3, 30, 40
manganese	, 30, 50, 72, 76
mercury	, 72, 76, 84, 85
metals, trace	46, 48, 49, 50,
55, 71, 76, 78, 79, 80, 82, 85, 86, 89, 91, molybdenum	92, 96, 97, 100
molybdenum	. 27, 72, 76, 79
monocyclic aromatic hydrocarbons 15, 30, 39	, 45, 48, 49, 76
${f N}$	
naphthalene	30, 39, 45
nickel	3, 49, 72, 76, 78
nitrobenzene	5, 48, 49, 50, 76
nitrogen	7, 30, 59, 76, 78
nitrogen (ammonia)	5, 59, 76, 79, 88
nitrogen (Kjeldahl)	5, 59, 76, 79, 88
nitrogen (nitrite and nitrate)	5, 78, 79, 82, 88
nitrophenol	5, 48, 49, 50, 76
nitrosamines	5, 48, 49, 50, 76
nutrients 2, 4, 11, 15, 23, 24, 26, 27, 30, 31, 44, 46, 50, 55, 59, 76, 78, 79, 82,	89, 90, 91, 100
O	,
organic constituents	, 38, 39, 43, 44,
45, 46, 48, 49, 50, 54, 55, 65, 66, 76, 78, 79, 80, 82, 84, 85, 86	5, 91, 92, 96, 97
organics, semivolatile	0, 45, 54, 80, 82
organics, volatile	2, 25, 30, 39, 45
organotins 5, 15, 24, 30	0, 31, 76, 82, 85
orthophosphate, see phosphate	'
oxygen demand	79, 88, 90, 100
2.27	7 30 46 55 76

Reference Number

1	D
1	Ľ

PAHs
50, 54, 66, 76, 79, 80, 84, 85, 91, 92, 96, 97 pathogenic organisms . 1, 2, 4, 5, 24, 26, 28, 30, 37, 41, 43, 46, 47, 55, 74, 79, 82, 90, 91, 93, 99 PCBs
50, 54, 66, 76, 79, 80, 82, 84, 85, 91, 92, 96, 97 pentachlorophenol
periphyton
pesticides
pH
phenol
phthalate esters 15, 30, 39, 48, 49, 50, 76
phytoplankton
population/community
pore water
priority pollutant metals
pyrene
Q
QA/QC
37, 39, 40, 41, 43, 48, 49, 54, 55, 57, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 98, 100
R
radioactivity
S
salinity (conductivity)
sampling
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 47, 48, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 75,
77, 78, 79, 81, 82, 83, 84, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100

	Reference
	Number
sampling, biological	36, 37, 40, 51,
52, 53, 56, 58, 60, 63, 64,	67, 71, 83, 98
sampling, grab	67, 69, 82, 84
sampling, sediment 14, 17, 20, 21, 24, 27, 28, 30, 31, 32, 37, 54, 60, 77, 82, 89,	93, 94, 96, 97
sampling, station positioning	32, 55, 77, 97
sampling, storage and shipping	32, 33, 39, 41,
53, 54, 55, 58, 60, 64, 67, 69, 71, 77,	84, 89, 96, 97
sampling, trawl, nets, traps	
sampling, trawi, nets, traps	82, 90, 96, 97
sampling, water 7, 24, 27, 30, 31, 32, 37, 39, 41, 43, 33, 36, 61, 62, 61, 71, 71, 72, 73, 74, 75, 75, 74, 75, 75, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75	72, 76, 78, 84
selenium	24, 30, 72, 76
silica	49 50 72 76
sodium	30, 72, 76
solids, dissolved	2 30 50 54
solids, floating	30 31 46 55
solids, floating	31 46 50 55
solids, settleable	50 55 82 85
solids, suspended	82 85 96 97
solids, total	27 28 30 46
solids, volatile2	30, 72, 76
strontium	50, 55, 76, 85
sulfides	, 50, 55, 70, 65
·	
${f T}$	
temperature	, 77, 79, 82, 91
tetrachloroethane	, 45, 48, 49, 76
tetrachloroethene	, 45, 48, 49, 76
tetrachloromethane	, 45, 48, 49, 76
thallium	, 49, 50, 72, 76
thorium	30, 72, 76
tin	. 24, 30, 72, 76
tide	24
tissue analysis	46, 49, 52, 53,
60, 65, 66, 79, 80, 81, 82, 83, 84, 85, 89	, 91, 96, 97, 98
tolyona 15, 30, 39, 45	5, 48, 49, 50, 76
toxaphene	, , , ,
toxicity/bioassays	5, 48, 49, 50, 76
(OXICILY/O10assays	, 48, 49, 50, 70
64 70 71 72 79 81 82 85 86 87 93	, 48, 49, 50, 76 , 40, 43, 57, 58,
64, 70, 71, 72, 79, 81, 82, 85, 86, 87, 93	, 48, 49, 50, 76 , 40, 43, 57, 58, 8, 94, 96, 97, 98
64, 70, 71, 72, 79, 81, 82, 85, 86, 87, 93	, 40, 43, 57, 58, 3, 94, 96, 97, 98 30, 55
64, 70, 71, 72, 79, 81, 82, 85, 86, 87, 93 transparency	3, 48, 49, 50, 76 40, 43, 57, 58, 3, 94, 96, 97, 98 30, 55 9, 45, 48, 49, 76
64, 70, 71, 72, 79, 81, 82, 85, 86, 87, 93 transparency	3, 48, 49, 50, 76 40, 43, 57, 58, 3, 94, 96, 97, 98
transparency	3, 48, 49, 50, 76 40, 43, 57, 58, 3, 94, 96, 97, 98
64, 70, 71, 72, 79, 81, 82, 85, 86, 87, 93 transparency	3, 48, 49, 50, 76 40, 43, 57, 58, 3, 94, 96, 97, 98

	1100000
	Reference Number
trichlorofluoromethane	
trichloromethane	
trichlorophenol	
turbidity 2, 4, 5, 15, 30, 37, 42, 43, 44	, 46, 50, 55, 58, 61, 63, 70, 74, 79, 81, 83, 88, 91, 100
U-V-W-X-Y-Z	50. 50. 50.
uranium	
vanadium	30, 72, 76, 78
vegetation	
vinyl chloride	
volunteer monitoring	
zinc	
zoonlankton	

		: ! !	·
	,	! !	
ı			

MARINEAR

DESTIDARIONE DE LA COMPANIONE DE LA COMP

MONITORIN

	/	/	//		/ /	7	<u> </u>	<u> </u>	//	//	7	//	<u> </u>	//	///	1	//		/ /	/ /	7	/ /	/ /	/		7	
F/	/,	6	Ι,				/,	/,	/,	/,	Ι,	0 K, \ 200 K	37		/,	Ι,	Ι,	Ι,		/,	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	>//	Ι,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Ι,
(35)	ts (USEPA, I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	./	/	A. S.	, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3	1/00/			ns (1/c)	W.					1 In.	So To	08/08		\$Tr.\						
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1, 18 80, 1	55/10 100/10	2 / Z	/				O CO	86								Zoles /	//			0 (E)	//		//
	\3 \$u_a 		13/			4, 80)	Method		\$ <u>`</u> , \$ <u>`</u> ,	/ 86 / S			\$4.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1867, 1869,	(68/,		Fin Fig.	Meals (/ &)/	/ /,	Torization (A Nati	1.891		7/	
mo.		\. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Jue uoi Jue uoi	NON W		/ge/3/2/	Supple Su		NOV	./ 2018/ 1910/1919		/S) Une /			5 M				, And		J. J	Ten 10		; / Hely			/,
ľ,	d Taring	Replie C	indie,	Seding	e 01 i	Toring a			S. Common of the Co.		Popular Propular	10 to 100	C. C	S. W. S.	1000 CE		5 Biol.	100 Sep. 111.		Y) 10		2 / S	hen in	Te dis			
Sel. 2		04 /04 /04 /04 /04 /04 /04 /04 /04 /04 /			<i>uen.</i> (4)	Jeu Jeu	The sale	Tine T	May de la	Pining V	Non: Non:	Sra Ni	Alle of the	P. A. P. C. P. P. C. P. C. P. P. P. C. P.	Jelling!	10 mg/1967	de latin	To Mail	Jak.	[Sugar		Juoni, jon)/en/45	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Carrie Carrie
	0,68 for 14.	, pd , st		S. F. Sample	05/20/2	Nation 1	20/2	4 650 A			Supplied to	5 /L	\$ 15 / S		Cefermii 14.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Tely un	r Filluei k:		5 4 Fr	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Shellf	1 se	ENA S	/ 33/ 15/34/34
P. 19.		Anally S	Toning /	Indice !	18 / C		N Waring	ed Sedin	dido Ba	\$ 100 m			10 m	1. to 1.	4 (ab)	/ Cv :kió/		Jonnifica J		N TO LES		Z Z Z	A SEL	No Mett	N. W.	1000 M	, lie le
18/11/	Linding Control	Jon (u)	Biologic	50 Con Mind of Cash Cuit Soding Marinashing	56. Kg.	190 Man Man Of Monic Or National Finds (190) (SE Man	iaj. Bed.	#for Po	r Perdia	Mont P.	4 And Process of the Control of the	Course	Salling	de Fiel.	, Non:			22 Prof. Deta Action Tide Life Deta (Series (USE) 1909)	nination /	Commercial of the policy of th	Non Notice of the Party of the	The State of the S	Monito,	, / & & /	ninatio, c	Semana nor Chemic Map (Stry 192)	Sedinon Colors of Nations Substantes 1992
100		mende	3/20	ig Ville		De May	N. West		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	fem N.			inverter S			o Junii.	N TO		T. Jes		o lion	inent?	perali:			A A D	
10/10	78	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15. A.			ep/V	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 S. S.	25,000	4	The A	To the second	\$ \Z	Bis, Sign	7 000 X		\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8 4	. Se / 3			No.) (c) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	\$ Z	STEE STEE	ğ/3	
5	056	057	058	059	060	061	062	063	064	065	066	067	068	069	070	071	072	073	074	075	076	077	078	079	080	081	082
3. P	: RES	िङ्क्षु	16.00 ES	1 7.577			less.	leg ç		V255		EZZ.	i Isang	4 44433			Paga,	To a		H-says			Tagag	15/34.)	Ray		
	3474																					(4) E		W			
Ý.					S														w		W S	W.		W.			W S
V																			W		W			Ŵ			WS
۷ ۷					- S																	W	136	W			W W
٧	Talker a	Control of the contro			20 17 17	STATE OF	7.4			2000 A 194	COPPOSE A	\$35500 -5524	977644.			Modrage.		\$25.74.5	W			and and a	**************************************	W			12754
																			W.			W		W			W
1	1				,	1 -				,	1				ŗ	1				ļ	1					1	

							,							
			WS	В				WS	WS			WS	Metals	
W			WS	В				WS	WS			WS	Inorganic Constituents	
			WS	В				WS	WS				Organic Constituents	
			S					ws	WS				Total Organic Carbon	
W		W	W									WS	Nutrients	
W		W				·						WS	Oxygen Demand	
			WS	В				WS	WS				PAHs	
			ws	В				WS	WS				PCBs	
			ws	В				WS	WS				Pesticides	
													Organotins	and a sure of the control of the con
													Radioactivity	
													BIOLOGICAL PARAMETERS	
			WSB			S		WS	WS				Bioaccumulation	.
		W	w										Chlorophyll	7
		WB	WSB							WB	В		Pathogenic Organisms	
		В	WSB								В		Population/Community	
	В		WSB	В				WS	W	В			Tissue Analysis	
					S	S		ws	WS	В			Toxicity/Bioassays	
- Anna Carlotte Company														
													RELATED TOPICS	
w	ws			В				WS	WS				Data Analysis/Management	
	ws	WB	WSB	В	S	S		WS	ws	WB		ws	QA/QC	
W	ws	WB	WSB		S	S		ws	WS	WB	В	ws	Sampling	
		WB					WSB						Volunteer Monitoring	
			1			المتعمل		Hint.	agric free				en e	

ARINE AND ESTUARINE MONITORING METHOD

A comprehensive listing of references on the subjects of sample collection, analytical methods, quality assurance, and other

assurance, and other pics related to water, sediment, and plogical monitoring of estuarine and astal environments. This chart is

Bibliography of Methods for Marine and Estuarine Monitoring. The information presented in this table represents a summary of the references described in the report. For each reference listed in this poster, a complete citation, keywords, an abstract, and the table of contents are included in the report.

Prepared for the Office of Water, Office of Wetlands, Oceans, and Watersheds, eans and Coastal Protection Division, U.S. Environmental Protection Agency, Washington, DC, 19