GOOSE ISLAND SHORELINE PROTECTION AND RESTORATION OF ADJACENT HABITATS Feasibility Study/Alternatives Analysis

BELAIRE ENVIRONMENTAL INC. Kay Jenkins

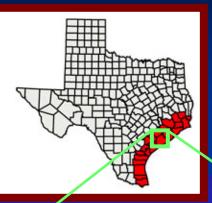
Yu-Chun Su Paul Jensen Martin Heaney Bob Gearhart Charlie Belaire

PROJECT PARTNERS

Coastal Erosion Prevention and Response Act (CEPRA)

PROJECT GOALS

Protect and restore wetland habitats on GI at Goose Island State Park in Lamar, Aransas County



Protecting the 1 mile long eroding shoreline of Goose Island and

Creating smooth cordgrass marsh

PROJECT LOCATION

On southern tip of Lamar Peninsula, northern shore of Aransas Bay between St. Charles Bay and Copano Bay

BACKGROUND

Eastern portion of Goose Island has been protected with a bulkhead since the 1970's which has been effective in protecting that part of the island.

EROSION ON GI SHORELINE

- Significant erosion on the unprotected western section
- TPWD analysis of aerial photography:
 - Land eroded between 1969 and 1995: 17.1 acres
 - Average erosion rate: 0.66 acre/year

Land Loss Land Gain

Comparison of aerial photography between 1969 and 1995 showing extent of habitat loss due to erosion.

- Shoreline mapping efforts by TPWD in 2001 and PBS&J in 2002:
 - An additional 8.5 acres has eroded between 1995 and 2002
 - Average erosion rate: 1.21 acres/year
 - Accelerating erosion rate

GI Shoreline Changes Between 1995 and 2002

WETLAND & AQUATIC HABITATS BEING LOST OR DEGRADED

- Nursery habitat for important fisheries, providing both protection and food
- Source of nutrients for entire bay system
- Provides food, shelter, perching, and roosting areas for many birds
- Removes sediments and contaminants from runoff leaving adjacent uplands

Smooth Cordgrass Marsh

OYSTER REEFS

Important economic activity in Aransas Bay

Valuable habitat for aquatic plants and animals providing food, nutrients, hiding places and attachment sites for these organisms

SEAGRASS BEDS

- Provide critical nursery habitat for many fisheries species
- Provide food for fish, sea turtles, and waterfowl
- Provide nutrients and organic matter for bay system
- Provide habitat for invertebrates, which are in turn fed upon by other organisms in the food web
- Stabilize the bay bottom with their root systems, dampening wave action, and reducing erosion

RECREATONAL IMPACTS

- Birding
 - Checklist of 315 species
- Park use
 - 307,657 people visited the park from September 1999 to August 2000

- Fishing
 - 12,700 vehicles used Goose Island public boat ramp from September 1999 to August 2000

SEEKING SOLUTIONS

- TPWD sought partners to help address the shoreline erosion problems on Goose Island in 2001
- In spring of 2002 TPWD entered into a partnership with the Texas General Land Office (GLO) and the Coastal Bend Bays & Estuaries Program to
 - evaluate alternatives for avoiding, slowing, or remedying coastal erosion on Goose Island and to
 - assess the feasibility, cost and financing of the alternatives
- GLO selected PBS&J as the engineering contractor (with Belaire Environmental, Inc. as a sub) and charged them with developing shoreline erosion alternatives and marsh creation alternatives, preferably using dredge material from nearby boat channels

PROJECT FEASIBILITY STUDIES

Bathymetry Survey Shoreline Mapping Seagrass And Oyster Survey Magnetometer Survey Geotechnical Survey Wind And Wave Analysis Alternatives Analysis Geotechnical Investigation **Along Preferred Alignment**

PBS&J SURVEY BOAT

- A 20-foot (ft) aluminum workboat
- Hydropro 2.0 navigation software
- A Satloc SLX GPS with Omnistar differential correction receiver
- An EG&G Geometrics G 881 cesium magnetometer
- A CODA Technologies DA50 side-scan sonar data acquisition system
- An Edgetech TD272 sonar towfish

An Odom Hydrotrac echo sounder with a narrow beam (4-degree), 200-kHz transducer

PBS&J SURVEY BOAT

- A TSS DMS 05 heave compensator
- A Valeport VTM740 automatic tide recorder
- Sonar transducers at a depth of about 2 ft
- Echo sounder transducer at 1.1 ft beneath the surface
- Boat speeds at 2.5 to 4.5 knots (2.9 to 5.2 mph)
- Side-scan sonar range -98 ft on each side of the towfish

- Magnetometer readings once per second
- Water depths four times per second

BATHYMETRY SURVEY

- Boat survey to as near shore as possible (~ 3 ft deep at high tide)
- Near shore survey along transects perpendicular to shoreline at 500-ft interval
- Tidal correction using TCOON gage data
- Data converted to NAVD88 via two bench marks
 - 036.001 4513 B 1989 located at Copano Bay State Fishing Pier Building
 - 036.002 4513 C 1989 located at Copano Bay State Fishing Pier

SHORELINE MAPPING

Oct 15, 2001 TPWD mapped shoreline

Sept. 10, 2002 PBS&J / DGPS mapped shoreline Shoreline mapping along Ordinary High Water Mark (OHWM)

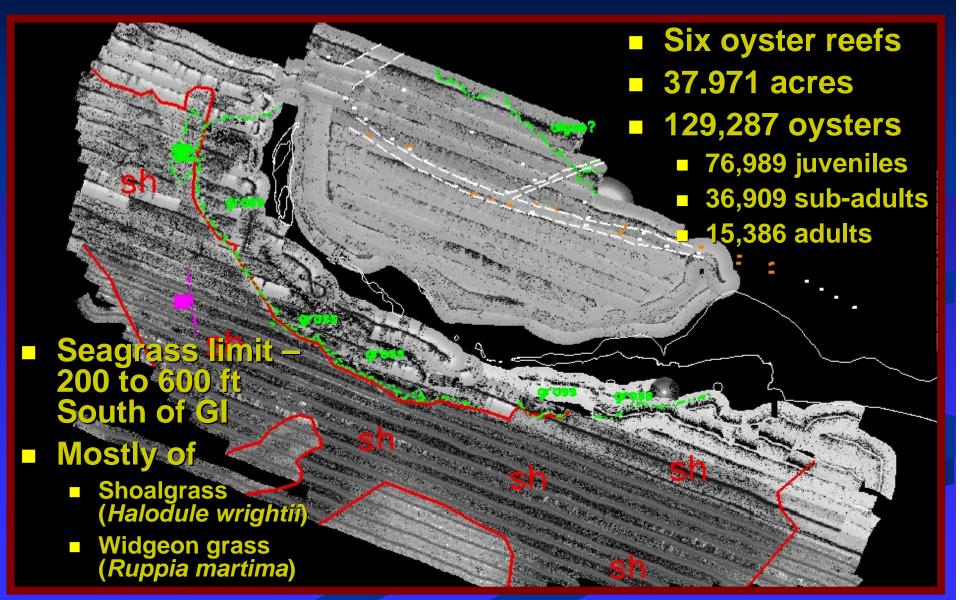
- Island elevation
- Vegetation composition

50 0 50 100 150 200 250 300 350 Feet

1995 Aerial Photograph

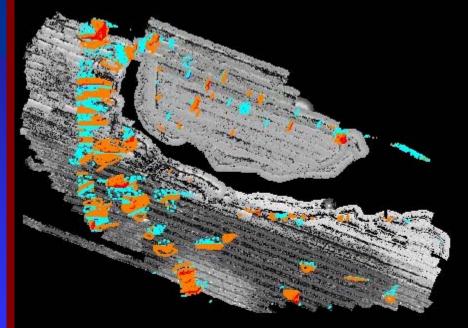
SEAGRASS AND OYSTER SURVEY

Side-scan sonar to map substrate anomalies that might represent oyster reefs or seagrass beds

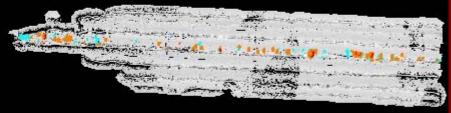


 Physical survey
Verify all substrate anomalies identified

> Areas not accessible by side-scan sonar


SEAGRASS AND OYSTER SURVEY

MAGNETOMETER SURVEY



0.5 gamma difference


Detect magnetic anomaly • Magnetic contour maps

- Bentley's Geopac digital terrain modeling software
- Five-gamma contour interval with 100-gamma index contours

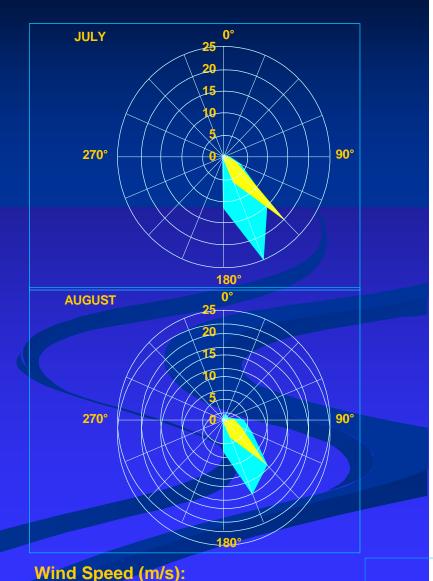
Compared with Texas Railroad Commission pipeline and well head database

SURVEY RESULTS

GEOTECHNICAL SURVEY

1974 NRCS Soil Survey:

- Tatton Complex" (Tn)
- 60% Tatton loamy sand
- 40% other soils
- 2002 Survey by PBS&J
 - 25 Coring Locations
 - 3-in diameter, 3-ft long
- Laboratory Testing:
 - Top 16 inches: clayeysand (54.8% sand, 5.5% silt, 39.7% clay)
 - 16-36 inches: silty-sand (81.2% sand, 18.8% silt, 0.0% clay)


WIND ANALYSIS

Data Source

- TCOON 009 gage (Port Aransas) between 3/1/93 0:00 and 9/18/02 17:00
- NWS Aransas County (Rockport) Airport gage between 7/1/96 03:00 and 9/13/02 08:00

Wind Roses

- Five wind speed categories
- 16 wind directions
- Dominate Winds
 - SE wind at 22.5 knots
 - SSE wind at 22.5 knots
 - S wind at 15 knots

0-<3 3-<6 6-<9 9-<12 >=12

WAVE ANALYSIS

Wind Fetch

- SE 5.20 mi
- SSE 6.48 mi
- S 12.33 mi
- Longest wind fetch (15.85 mi) from SSW
- Water Depths
 - Navigational Chart
 - TCOON 036 gage data
- Coastal Engineering Design & Analysis System program (CEDAS, version 2.01E)
- Decision not to design for extreme (hurricane) events

WAVE ANALYSIS

Wind Direction (% Total Wind)	Wind Speed	Wind Fetch		Average Water Depth		Wave Height	Wave Period
	(knots)	(ft)	(miles)	Datum	(ft)	(ft)	(s)
SE (21.5%)	22.5	27,468	5.20	Deep Water		1.93	2.94
				MHW	4.86	1.18	2.31
				MSL	4.68	1.16	2.30
				MLW	4.49	1.14	2.29
SSE (14.9%)	22.5	34,228	6.48	Deep Water		2.15	3.17
				мнพ	5.45	1.30	2.45
				MSL	5.27	1.28	2.44
				MLW	5.08	1.25	2.43
S (7.7%)	15.0	65,115	12.33	Deep Water		1.77	2.96
				MHW	7.83	1.34	2.57
				MSL	7.65	1.32	2.56
				MLW	7.46	1.31	2.55
SSE	29.2	34,228	6.48	Extreme	6.37	1.75	2.79

ALTERNATIVES ANALYSIS

Constraints

Factors Considered

- Bathymetry (water depths)
- Potential impacts to existing seagrass and oyster habitats
- Locations of potential wells, pipelines, and other metallic anomalies
- Geotechnical conditions
- Available quantities of dredged materials

- Effectiveness against the design waves
- Longevity
- Aesthetics
- Ease of construction
- Construction timeline
- Construction methods
- Costs

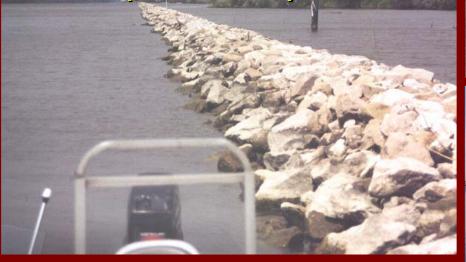
CONSTRAINTS

- Alternatives need to address erosion problem
- Alternatives need to preserve and/or increase the quantity, quality, and diversity of habitats and living resources in Aransas Bay
- Alternatives need to be environmentally acceptable and able to be permitted
- Alternatives need to be acceptable to funding partners, resource agencies, park users, and local citizens

SHORELINE PROTECTION

- Construction of a breakwater was considered to be the best approach to addressing shoreline erosion by the project advisory team
- Types of breakwaters considered:
 - Geotube
 - Rock breakwater
 - Articulating Concrete Blocks
 - Gabions

BREAKWATER TYPES

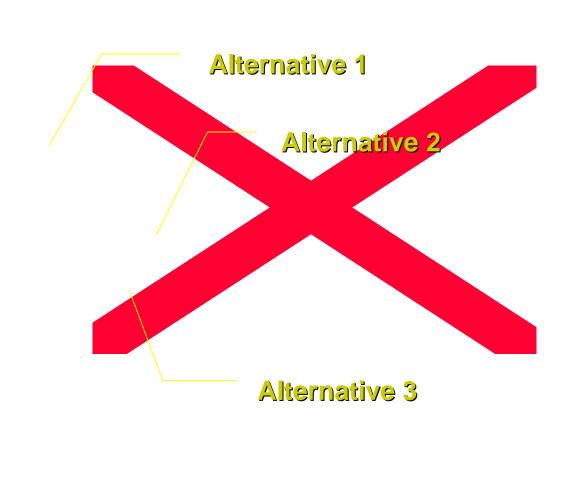

Geotubes **Rock Breakwater** Articulating Concrete Blocks

BREAKWATER CONSIDERATIONS

- Type of Breakwater Considerations
 - Effectiveness at meeting project goals
 - Longevity
 - Maintenance requirements and cost
 - Safety of park visitors and boaters
 - Aesthetics
- Breakwater Location Considerations
 - Effectiveness of meeting goals
 - Safety of park visitors and boaters
 - Aesthetics

BREAKWATER ALTERNATIVES

Ofishore Rock Breakwater or Articulating Concrete Blocks (Alts. 2 & 3)



Rock Revetment Onshore (Alt. 1)

Articulating Concrete Blocks as Onshore Revetment (Alt. 1)

BREAKWATER LOCATIONS

Alternative 1 - Onshore Revetment

Advantages

- Less expensive
- Easier construction methodology

Disadvantages

- Only addresses shoreline erosion
- Does not restore wetland habitats
- Possible impacts to seagrass beds and smooth cordgrass marsh

Articulating Concrete Blocks as Onshore Revetment

Alt. 2 - Breakwater @ 1969 Shoreline

Advantages

 Opportunity to restore and/or enhance wetland and aquatic habitats between breakwater and existing shoreline

Disadvantages

Footprint of breakwater structure would impact up to 2.75 acres of seagrass beds Seagrasses exposed during a cold front along the alignment of the Alternative 2 breakwater

Alt. 3 - Offshore Breakwater (~400 ft)

Advantages

- Creates lagoon effect between breakwater and shoreline which may enhance seagrass habitat reestablishment of marsh
- Less environmental impacts

Disadvantages

- Higher cost to build (more materials)
- Has to be constructed using workboats

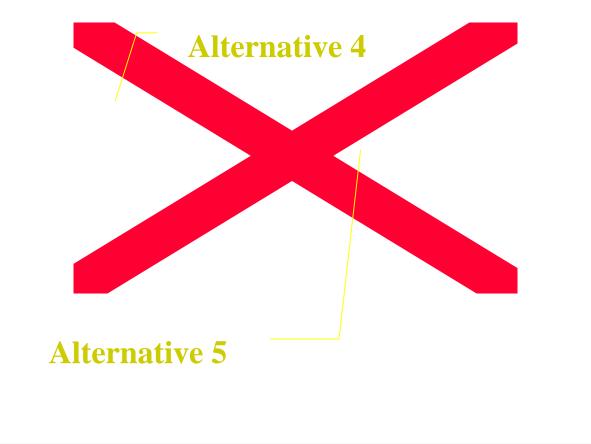
Offshore breakwater on Shamrock Island and the resulting lagoon effect

BREAKWATER WARNING

MARSH RESTORATION TECHNIQUES

Placement of dredge material into terraces

Placement of dredge material into mounds



MARSH RESTORATION ALTERNATIVES

Placing dredge material from boating channels that access Neptune Harbor and Goose Island State Park boat ramp into confined marsh cells.

MARSH RESTORATION LOCATIONS

Community-based Marsh Restoration

Take clean, dry, innocent students and volunteers, place them in the water, plant marsh transplants, and finish with a good mud fight!

PREFERRED ALTERNATIVE

GEOTECHNICAL INVESTIGATION

- Along preferred offshore breakwater alignment
- Soil-bearing capacity
- Vane-Shear Test
- Plate-Load Test
 - 6-inch round steel plate
 - Max 165 pounds of weight
 - 15 min loading time
 - Max 4 in settlement (mostly less than 1 in)
- Significant sand and shell composition found

PROJECT STATUS

Undergoing detailed design

Expected Date to Start Construction: Spring, 2004

Kay.Jenkins@tpwd.state.tx.us ycsu@pbsj.com