| Project No. | MF-R-5 Date Ma | 16, 196 |  |
| :---: | :---: | :---: | :---: |
| Project Name: | Analysis of Populations of Sports and Commercial Fin-Fish |  |  |
|  | and of Factors Which Affect These Popul | ions in |  |
|  | Coastal Bays of Texas |  |  |
| Period Covered | January 1, 1963 to December 31, 1963 | Job No. | 8 |

## Population Studies of the Sports and Commercial Fin-Fish and Forage Species of the Upper Laguna Madre


#### Abstract

Pinfish and anchovies were the major forage species captured throughout 1963 in traw1 and seine samples. There was no evidence of a shortage of forage fish at any time. Juvenile redfish and drum decreased in numbers in 1963 while the number of juvenile trout increased. Three methods of estimating fish populations were tried, compared with commercial landings, and discussed. It was concluded that commercial landings, when considered with monthly fish prices, were the most indicative of population fluctuations. A mass tagging and recovery program, using only those fish captured, tagged, and recovered from drag seine samples, was the best of the methods investigated for fish population estimations.


Objectives: To determine population fluctuations of food and game fish and forage species of the upper Laguna Madre.

Procedures: Four seine stations established in 1961 were sampled each month with a 60-foot bag seine of three-fourths of an inch stretched mesh webbing. One station, a tidal pond, was discontinued when it became land-1ocked and practically void of fish. All fin-fish, shrimp, and crabs caught in these samples were counted, measured, and weighed by species. An attempt was made to standardize all seine hauls by covering 12,000 square feet of bottom at each station.

Five stations were sampled each month with a 10-foot otter traw1 1ined with a $1 \frac{1}{2}$-inch stretched mesh liner. Each sample was of 15 minutes duration. The catches were sorted, measured, and weighed similar to the seine catches.

At the first of the year 4 adult fish stations were sampled monthly with 1,200 feet of drag seine. In July, 1, station was sampled with 2,400 feet of drag seine attached to 1,200 feet of trammel net. The trammel net did not work well when pulled and was eliminated from the sampling gear. From July to December, 2 stations were sampled each month with 2,400 feet of drag seine. game fish caught were counted, measured, and most were tagged. Gill nets, trammel nets, and hook and line were also used to catch fish for tagging.

## Forage Species

Discussion: Table 1 shows the average weight in pounds of the forage samples collected for this project. Table 2 lists the most common forage
species caught in the upper Laguna Madre, giving the relative monthly abundance and average size of each species caught.

Both trawl and seine sampling indicated that more food was available in the warmer months. Pinfish, Lagodon rhomboides, and anchovies, Anchoa sp., were by far the most abundant species throughout the year. Silversides, Menidia beryllina, spot, Leiostomus xanthurus, and shrimp, Penaeus sp., in this order, were the next most important forage species. Killifish, Cyprinodon variegatus, and Fundulus sp., were too small to be caught by either trawl or seine but were present in the lagoon all year in great numbers. Mullet, Mugil cephalus, were also present throughout the year in large quantities, but generally were too fast to be caught with the sampling gear.

## Juvenile Game Species

Cynoscion nebulosus - Speckled trout were the most common juvenile game fish caught in the area in 1963, and they were more abundant than in the previous year. They were most common in July when 27 , with an average standard length of 25 mm , were caught in the Intracoastal Waterway at Marker 23. Most samples taken in July contained one or more trout, which indicates that there was a successful trout spawn in May or June. August and November were the only other months in which juvenile trout were caught, and then only one fish was captured each month. Only 14 trout were caught in similar samples in 1962, and these were taken in June, July, and December. July was also the best month in 1962 for catching juvenile trout.

Sciaenops ocellata - Juvenile redfish declined sharply in numbers from 1962. Fifty-nine small redfish were caught in seine and trawl samples taken between February and March 1962. Three young redfish were taken in similar samples made in 1963. Other seine hauls made in March 1963, especially to locate young redfish, produced less than one redfish per three seine drags.

Pogonias cromis - No juvenile black drum were caught in 1963. The 1962 crop was also exceptionally small; only six drum were found. As was stated in the hydrographic report of this project, less than 15 inches of rain fell in either 1962 or 1963 and salinities of the upper Laguna Madre were high, above 44 parts per thousand. It appears that high salinity may inhibit the spawning of drum or the hatching or development of their eggs, but more intensive work needs to be done on this before a definite conclusion can be reached.

## Adult Populations

A fish tagging and sampling program was conducted in the upper Laguna Madre as a means of estimating game fish populations. Population size estimations were attempted for redfish, Sciaenops ocellata, drum, Pogonias cromis, and sheepshead, Archosargus probatocephalus, because they were the most commonly caught fish with the highest ratio of tag returns. While trout, Cynoscion nebulosus, were nearly as abundant as drum, no estimate was attempted other than catch per acre because so few of the tagged trout were returned.

Drag seine catches per acre are listed in Table 6 by species. Table 7 gives the commercial landings for each month of 1963. Table 8 lists by species the number of fish tagged each month and Tables 9 and 10 include the data obtained from tags recovered. From this information, plus the 1962 fin-fish job report from the upper Laguna Madre, the following population estimates were made.

Redfish - Table 3 gives the figures and steps for estimating redfish populations by means of fish tagging and tag recovery. This calculation is known as the Schnabel method and is described by Rounsefell and Everhart (1953). The
population estimation derived by this method indicated a level of 575,000 to 708,000 fish during the period from May through September 1963.

Another method used was to calculate the number of redfish caught per acre in the drag seines and multiply by 128,000, the number of acres in the bay. This estimate, for the period May through October, is 230,000 fish. The monthly variation was extreme.

The Schnabel method was designed for use in a small body of water and is most reliable when a large percentage of the available fish are tagged. Neither of these conditions was possible in the lagoon. Since there was no practical way to determine how many fish were caught in the lagoon, commercial landings were used. Tag returns depended entirely on whim of the individuals who caught tagged fish, so it is safe to assume that not all tags were returned.

The second method is also subject to error since fish are never uniformly distributed, so 2 or 4 samples a month were not enough for an accurate estimate of the number of fish present in the area. At best this estimates the number of fish present in the sampling area.

The above two estimates of redfish populations, plus commercial landings, are plotted in Figure 1. Commercial landings and catch per acre follow very roughly the same seasonal increase in the warm months and a decrease in November and December. Almost no correlation can be seen between the tagging estimate and the other two graphs by month although the two averages are roughly comparable. Catch per acre is probably a more accurate way to estimate bay redfish populations than the Schnabel method.

Drum - The Schnabel method of estimating populations was worked out in the same manner for drum. The indicated population ranged from 856,000 fish to $8,330,000$ fish for a 9 -month average of $5,000,000$ fish. The range of the population as determined by the catch per unit effort method was 358,000 to $4,761,000$ fish with an average of $2,112,000$ fish. It should be noted, however, that a more efficient net was placed in use in July, and samples from this net indicated an average population of $4,350,000$ fish, very near the Schnabel estimation.

The minimum, average, and maximum are therefore:

> Schnabel Catch/Effort \& Drag Seine Drag Seine only

$$
\begin{aligned}
& 856,000-5,000,000-8,330,000 \\
& 358,000-2,112,000-4,761,000 \\
& 358,000-4,350,000-4,761,000
\end{aligned}
$$

It was also possible to work out a sub-population. During the drag seine sampling several drum, tagged at Marker 65, were recovered at this same station. Schnabel's formula was used to estimate the drum in the vicinity of Marker 65 because an accurate record of tagged fish, total catch, and tag returns was available from the drag seine sampling of this station. (It was impossible to establish limits for this vicinity but another drag seine station was within four miles of Marker 65 and no fish tagged there were ever caught when seining at Marker 65. Only one drum tagged at Marker 65 was recovered from the other seine area.) The sub-population was estimated at approximately 90,000 fish during the fall months. Both estimates are charted by steps in Table 4. Three drum tagging population estimates were graphically compared in Figure 2 with commercial landings. Commercial catches are probably the best indicators of population fluctuations available. It should be noted, however, that the decrease in landing during fall months is due to
a drop in prices and not to a scarcity of fish. Drag seine samples remained high during this same period. Catch per acre, sub-population estimate, and commercial landings at least agree in indicating a general increase in drum between May and November. In December, these two estimates declined while commercial catches increased. Low estimates in December were due to poor drag seine catches caused by fish moving from shallow water to deeper and warmer water that could not be sampled with the seine. A big commercial drum catch is an excellent indication that there was a large population of drum present in December.

Sheepshead, Archosargus probatocephalus. Month1y sheepshead populations were estimated by catch per acre in the same manner as redfish and drum estimates were made. Only one sheepshead tag was returned so a bay population estimation based on tag returns could not be made. However, a sub-population estimate, similar to the one made for drum, was attempted and its steps are described in Table 5.

Comparison of the two population estimates and commercial landings of sheepshead are plotted in Figure 3. Sheepshead are often not separated from drum at commercial fish houses, especially when they are in small lots. Therefore, many more sheepshead are marketed than are shown by landing statistics. Catch per acre figures increased in May and remained above 1.0 except for October and November (Table 6). Marker 65 produced the most sheepshead and this station was not sampled two of the three months in which the catch per acre fell below 1.0. The third month was December, when catches for all species were low as previously explained. In the case of sheepshead, it appears that the sub-population estimate based on tags released and recaptured at Marker 65 is the most dependable of the three means discussed in determining fluctuations in the annual sheepshead crop.

Comments: Juvenile trout were much more abundant in spring and summer of 1963 than in 1962. High salinities in the lagoon in 1962 and 1963 may have had an adverse affect on young redfish and drum but it did not appear to affect young trout.

Of the four means of estimating populations and trends discussed for the three species, commercial landings, when used in conjunction with prices paid for fish, appear to be the best. These tell of fluctuations in the population and in effort. Large scale tagging and recovery of tags, at widely separated stations, may prove to be a good key to population size as well as fluctuations. Catch per acre estimates based on drag seine catches depend on the area sampled, when it is sampled, water temperature, how the net is put out and pulled in, and a host of other factors. A large number of samples over each type of bay bottom, and at various depths and times each month, would increase the accuracy of this type of estimate. It is not possible to estimate populations based on random tagging and tag returns throughout the lagoon unless a method is devised to count all the fish caught and to insure a much larger percentage of returns of the tags actually found on fish by both sports and commercial fishermen.

Joseph P. Breuer
Project Leader
Marine Biologist
(374)


Table 1
Forage Samples Collected in the Upper Laguna Madre in 1963 Average Weight in Pounds


Numbers represent pounds of forage caught per sample

[^0]Table 2
Composition of Monthly Forage Samples Taken in the Upper Laguna Madre in 1963

| ¢ | Date | Pinfish | Croakers | Anchovies | Spot | Silver Sides | Pigfish | Trout | Killifish | Mu11et | Shrimp | Crabs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | January | No sampl | es collect |  |  |  |  |  |  |  |  |  |
|  | February | 70* | 40x | 25x |  | 70- |  |  | - |  | - | 30- |
|  | March | 70* |  | 35* | 25x | 75x |  |  | - |  | 80- | 35- |
|  | April | 75* |  |  | 50\% |  | 20- |  |  |  | 85- | 35- |
|  | May | 55* | - | 35* | 55x | 45x | - |  | - |  | 70x |  |
|  | June | 60* |  | 35* | 75* | 45x | 45x |  | - | 120- | 65 x |  |
|  | July | 65* | 55x | 40\% | 75- |  | 50x | 25x | x |  | 60x |  |
| 6 | August | 65* |  | 45* | 60- | 45x |  | 100- | - |  | 70x |  |
|  | September | 45* |  | 40\% | 70- | 45x | $\sim$ |  | - |  | 65- |  |
|  | October | 75* |  | 40* |  | 60x |  |  | - |  |  |  |
|  | November | 80x |  | 40\% |  | 60- |  | 90- | - |  |  |  |
|  | December | No samp1 | s collect |  |  |  |  |  |  |  |  |  |

Numbers represent approximate average size in millimeters

* $=$ Abundant
x $=$ Common
- = Present

Table 3
Estimation of 1963 Redfish Population in the Upper Laguna Madre by Intensive Marking

| A | B | C | D | E | F | G | H | I |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1962 |  |  |  |  |  |  |  |  |  |
| Sept. | 49 |  |  |  |  |  |  |  |  |
| Oct. | 52 | 5536 | 1 | 271,000 | 271,000 | 271,000 | 1 | 271,000 |  |
| Nov. | 53 | 6887 |  | 358,000 | 538,000 | 629,000 | 1 | 629,000 |  |
| Dec. | 56 | 2255 |  | 120,000 | 120,000 | 749,000 | 1 | 749,000 |  |
|  |  |  |  |  |  |  |  |  |  |
| 1963 |  |  |  |  |  |  |  |  |  |
| Jan. | 56 | 1577 |  | 883,000 | 883,000 | $1,632,000$ | 1 | $1,632,000$ |  |
| Feb. | 56 | 1167 |  | 65,400 | 65,400 | $1,697,400$ | 1 | $1,697,400$ |  |
| Mar. | 75 | 2600 |  | 146,000 | 146,000 | $1,843,400$ | 1 | $1,843,400$ |  |
| Apr. | 79 | 2200 |  | 155,000 | 155,000 | $1,998,400$ | 1 | $1,998,400$ |  |
| May | 87 | 4207 | 3 | 332,000 | 110,888 | $2,330,400$ | 4 | 575,100 |  |
| June | 94 | 2962 |  | 258,000 | 258,000 | $2,588,400$ | 4 | 647,100 |  |
| Ju1y | 115 | 4533 |  | 426,000 | 426,000 | $3,014,400$ | 4 | 753,600 |  |
| Aug. | 172 | 3770 | 1 | 434,000 | 434,000 | $3,448,400$ | 5 | 689,680 |  |
| Sept. | 188 | 4672 | 1 | 804,000 | 804,000 | $4,252,400$ | 6 | 708,733 |  |
| Oct. | 191 | 5179 | 4 | 674,000 | 168,500 | $4,926,400$ | 10 | 492,640 |  |

A = Time interval of 1 month
$B=$ Tagged redfish in bay at end of each month
$C=$ Number of redfish caught each month (commercial landings in pounds divided by 2.54)
D $=$ Tags recovered each month
$E=$ Number of redfish caught (C) multiplied by the number of tagged redfish in the bay at the end of the previous month (B)
$F=E / D$
G = Cumulative E
H = Cumulative D
$I=G / H=$ Estimated redfish in bay each month

Note: 2.54 is the average weight in pounds of 250 commercial redfish.

Table 4
Estimates of 1963 Drum Population in the Upper Laguna Madre by Intensive Marking
A
B
C
D
E
F
G
H
I

Lagoon Population
$\frac{1962}{\text { Sept. }} 15$

| ept. | 15 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct. | 53 | 5,533 |  | 72,850 | 72,850 | 72,850 |  | 72,800 |
| Nov. | 92 | 6,753 |  | 357,750 | 357,600 | 430,600 |  | 430,000 |
| Dec. | 103 | 8,191 |  | 753,480 | 753,480 | 1,184,080 |  | 1,180,000 |
| 1963 |  |  |  |  |  |  |  |  |
| Jan. | 131 | 15,525 |  | 1,596,500 | 1,596,500 | 2,780,580 |  | 2,780,000 |
| Feb. | 131 | 8,112 |  | 1,062,410 | 1,062,410 | 3,842,990 |  | 3,842,000 |
| Mar. | 285 | 11,033 |  | 1,441,000 | 1,441,000 | 5,283,990 |  | 5,280,000 |
| April | 379 | 4,804 |  | 1,368,000 | 1,368,000 | 6,651,990 |  | 6,650,000 |
| May | 517 | 4,439 |  | 1,682,760 | 1,682,760 | 8,334,750 |  | 8,330,000 |
| June | 705 | 2,348 | 4 | 1,214,950 | 303,938 | 8,638,688 | 4 | 1,160,000 |
| July | 1,092 | 2,653 | 4 | 1,868,250 | 467,082 | 9,105,770 | 8 | 1,140,000 |
| Aug. | 1,162 | 4,277 | 4 | 4,673,760 | 1,168,440 | 10,274,210 | 12 | 856,000 |
| Sept. | 1,955 | 4,105 | 1 | 4,764,200 | 4,764,200 | 15,038,410 | 13 | 1,160,000 |

Sub-population at Marker 65

| Apri1 | 56 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May | 135 | 84 |  | 4,704 | 4,704 | 4,704 |  | 4,704 |
| June | 295 | 167 | 3 | 22,545 | 7,515 | 27,249 | 3 | 9,080 |
| July | 487 | 586 | 4 | 172,870 | 43,218 | 200,119 | 7 | 28,600 |
| Aug. | 723 | 915 | 4 | 445,605 | 111,401 | 645,724 | 11 | 58,700 |
| Sept. | 1,236 | 513 |  | 370,899 | 370,899 | 1,016,623 | 11 | 92,400 |
| Oct. | 1,236 | No |  | 1,236 | 1,236 | 1,017,859 | 11 | 92,500 |
| Nov. | 1,236 | 26 |  | 32,136 | 32,136 | 1,049,995 | 11 | 95,500 |
| Dec. | 1,242 | 7 | 1 | 8,652 | 8,652 | 1,058,647 | 12 | 88,200 |

$\mathrm{A}=$ Time interval of 1 month
$B=$ Tagged drum in bay at end of each month
$C=$ Number of drum caught each month (commercial landings in pounds divided by 3.6 ) ( 3.6 is the average weight of drum caught in the lower Laguna Madre by contract netters in 1962)
D = Tags recovered each month
$E=$ Number of drum caught (C) multiplied by the number of tagged drum free at the end of the previous month (B)
$F=E / D$
G = Cumulative E
H = Cumulative D
$\mathrm{I}=\mathrm{G} / \mathrm{H}=$ Estimated month1y populations
Lagoon population figures are based on all tags used in the area and uses commercial landings for C .
Sub-population figures are based on only those tags used and recovered in drag seine samples at Marker 65. The value of $C$ is the number of drum caught in each sample.

Table 5
Estimate of 1963 Sheepshead Population at Marker 65 in the Upper Laguna Madre by Intensive Marking

| A | B | C | D | E | F | G | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Apri1 | 54 |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| May | 77 | 26 | 3 | 1,404 | 468 | 1,404 | 3 | 468 |
| June | 91 | 19 | 4 | 1,467 | 367 | 2,871 | 7 | 410 |
| July | 125 | 42 | 3 | 3,780 | 1,260 | 6,651 | 10 | 665 |
| Aug. | 145 | 32 | 2 | 4,000 | 2,000 | 10,651 | 12 | 888 |
| Sept. | 181 | 37 | 0 | 5,365 | 5,365 | 16,016 | 12 | 1,340 |
| Oct. | 181 | 0 | 0 | 181 | 181 | 16,197 | 12 | 1,350 |
| Nov. | 201 | 21 | 1 | 3,801 | 3,801 | 19,998 | 13 | 1,540 |
| Dec. | 201 | 0 | 0 | 201 | 201 | 20,199 | 13 | 1,550 |

$\mathrm{A}=$ Time interval of 1 month
$B=$ Cumulative total of sheepshead tagged at Marker 65 each month
C = Number of sheepshead caught in drag seine at Marker 65 each month
D = Tags recovered each month
$E=$ Number of sheepshead caught (C) multiplied by the number of tagged sheepshead free at the end of the previous month (B)
$F=E / D$
G = Cumulative E
H = Cumulative D
$I=G / H=$ Estimated monthly sheepshead population in the vicinity of Marker 65

Tab1e 6
Results of Adult Drag Seine Sampling in the Upper Laguna Madre in 1963 (Fish/Acre)


Numbers represent number of fish caught per acre sampled
Station $1=$ Marker $65 \quad$ R $=$ Redfish
Station 2 = East shore, Big Cove
D = Drum
Station $3=$ West flats, Pita Island
S = Sheepshead
Station 4 = Point of Rocks
F = Flounder
C = Croaker

Tab1e 7
1963 Commercial Landings of the Upper Laguna Madre as Reported

| Month | Redfish | Trout |  | Flounder |  | Drum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | Sheepshead

A11 figures represent pounds of fish

Table 8
Fish Tagged in the Upper Laguna Madre in 1963

| Month | Trout | Drum | Sheepshead | Redfish | F1ounder | Croaker | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 0 | 28 | 1 | 0 | 1 | 0 | 30 |
| February | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| March | 36 | 154 | 11 | 19 | 8 | 1 | 229 |
| April | 11 | 94 | 54 | 4 | 2 | 0 | 165 |
| May | 68 | 138 | 80 | 8 | 5 | 15 | 314 |
| June | 16 | 188 | 19 | 10 | 4 | 22 | 259 |
| July | 71 | 387 | 39 | 21 | 35 | 0 | 553 |
| August | 80 | 370 | 37 | 58 | 5 | 0 | 550 |
| September | 93 | 793 | 38 | 17 | 0 | 0 | 941 |
| October | 29 | 112 | 0 | 7 | 0 | 0 | 148 |
| November | 15 | 34 | 42 | 6 | 2 | 0 | 99 |
| December | 22 | 17 | 1 | 2 | 0 | 0 | 42 |
| Total | 441 | 2,315 | 322 | 152 | 62 | 38 | 3,330 |

Table 9
Growth and Movement Data Collected from Fish Tagging in 1963

Release
Date
Redfish

| Release Date | Point of Release | Total <br> Length | Growth |
| :---: | :---: | :---: | :---: |
| Redfish |  |  |  |
| 8/ 1/62 | Marker 201 | 121 $\frac{1}{4}$ | 3 3/4 |
| 7/25/62 | Pita Island | - | - |
| 7/26/62 | Marker 201 | 111/2 | $4 \frac{1}{2}$ |
| 8/13/62 | Pita Island | 1312 | 6 |
| 10/31/62 | Pita Island | 26 | 0 |
| 4/29/63 | Marker 65 | 2012 | $1 \frac{1}{2}$ |
| 7/25/62 | Pita Is1and | 13 | - |
| 11/ 9/62 | Pita Island | 17 | 3 |
| 8/ 9/63 | Marker 25 | - | 0 |
| 12/19/62 | Point of Rocks | 151/4 | $23 / 4$ |
| 6/19/63 | Marker 65 | 21/2 | -1 |
| 7/25/62 | Pita Island | 1312 | 101/2 |
| 11/19/62 | Pita Island | 213 | $3 \frac{1}{2}$ |
| 6/15/62 | Marker 201 | $103 / 4$ | 12 $\frac{1}{2}$ |
| 6/13/62 | Marker 45 | - | - |
| 3/12/63 | Pita Island | 17 3/4 | $53 / 4$ |
| 12/19/62 | Point of Rocks | 1612 | $1 \frac{1}{2}$ |
| 5/22/63 | Marker 45 | 181 | 1 |
| 5/16/63 | Marker 65 | 18 | 312 |

Caught

Point of Release

Total
Length
$3 \frac{1}{2}$
Time $\quad$ Movement
Free By Free Movement

| 5 3/4 mo. | 80 <br> 10 mo. | 4 miles S |
| :---: | :---: | :---: |
| 10 mo. | - | S |
| 9 mo. | None | S |
| $7 \frac{1}{2}$ mo. | 5 miles S | C |
| 2 mo. | 11 miles N | C |
| 11 mo. | 43 miles S | C |
| $7 \frac{3}{2}$ mo. | 5 miles N | S |
| $\frac{1}{4}$ mo. | None | S |
| 8 mo. | $* 54$ miles S | S |
| 2 3/4 mo. | 13 miles N | S |
| $14 \frac{1}{2}$ mo. | 2 miles S | C |
| 11 mo. | - | C |
| 16 mo. | 36 miles N | C |
| 16 mo. | - | S |
| $5 \frac{1}{2}$ mo. | 5 miles N | S |
| $9 \frac{1}{2}$ mo. | 14 miles N | C |
| 6 mo. | 2 miles N | S |
| $6 \frac{1}{2}$ mo. | 10 miles S | S |

$\frac{\text { Drum }}{7 / 19}$
7/19/62
2/21/62
3/28/63
4/29/63
4/29/63
4/29/63
4/29/63
5/21/63
6/19/63
4/29/63
7/24/63
7/24/63
6/18/63 6/18/63
12/ 5/61
2/ 8/62
7/24/63
9/10/63
7/24/63
8/21/63
9/23/63 7/24/63
11/15/62 7/24/63 7/23/63

No movement indicates fish was caught within one mile of point of release
$S=$ Sport fisherman Length and growth are shown in inches
C $=$ Commercial fisherman
$\mathrm{N}=$ Recaptured in adult fish sampling

* Indicates fish was caught in an area other than the upper Laguna Madre

Table 10
Growth and Movement Data Collected from Fish Tagging in 1963

| Re1ease | Point of | Total |  | Time |  | Caught |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Release | Length | Growth | Free | Movement | By |

Sheepshead

| 4／29／63 | Marker 65 | 1931 | 0 | 3／4 mo． | None | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4／29／63 | Marker 65 | 183／4 | 0 | 3／4 mo． | None | N |
| 4／29／63 | Marker 65 | $173 / 4$ | 0 | $3 / 4 \mathrm{mo}$ | None | N |
| 4／29／63 | Marker 65 | 1312 | 0 | $13 / 4 \mathrm{mo}$ ． | None | N |
| 4／29／63 | Marker 65 | 151／4 | 0 | $13 / 4 \mathrm{mo}$ 。 | None | N |
| 5／21／63 | Marker 65 | 14\％ | 0 | 1 mo 。 | None | N |
| 6／19／63 | Marker 65 | $14 \frac{1}{4}$ | 0 | 4 mo ． | None | N |
| 7／24／63 | Marker 65 | 171／2 | 0 | 1 mo ． | None | N |
| 6／19／63 | Marker 65 | 13／2 | 0 | 1 mo ． | None | N |
| 4／29／63 | Marker 65 | $19 \frac{1}{4}$ | 0 | 3 mo ． | None | N |
| 5／16／63 | Marker 65 | 19 | 0 | $1 \frac{1}{4} \mathrm{mo}$ 。 | None | N |
| 9／24／63 | Marker 65 | 171／2 | 0 | 1 mo ． | None | S |
| 6／19／63 | Marker 65 | 1212 | $2^{\prime \prime}$ | 5 mo ． | 4 miles SE | N |
| 9／24／63 | Marker 65 | 171／4 | 0 | 2 mo ． | None | N |
| Trout |  |  |  |  |  |  |
| 3／13／63 | Pita Island | 20 | 0 | 2 mo ． | None | C |
| 4／24／63 | Marker 185 | 10\％$\frac{1}{2}$ | 0 | 1 mo ． | 40 miles N | S |
| 5／30／63 | Marker 187 | 11 3／4 | 1 | $43 / 4 \mathrm{mo}$ 。 | ＊55 miles S | S |
| F1ounder |  |  |  |  |  |  |
| 4／4／63 | Marker 201 | 12 | 2 | 4 mo ． | None | S |

[^1]Figure 1
1963 Upper Laguna Madre Redfish Population Estimates Compared to Commercial Catches


Figure 2
1963 Population Estimates of Drum in the Upper Laguna Madre Compared to Commercial Landings


Figure 3
1963 Estimates of Sheepshead Population in the Upper Laguna Madre from Drag Seine Catches and Tag Returns Compared to Commercial Landings



[^0]:    T 1 = Trawl east of Pita Island
    S $1=$ Seine at Tyler's Point
    T 2 = Trawl west of Tropic Isle Channe1
    S $2=$ Seine at Pita Island
    T 3 = Trawl at Marker $23 \quad$ S $3=$ Seine west of Marker 27
    T $4=$ Trawl west of Marker 75
    T 5 = Trawl in Yarborough Pass

[^1]:    No movement indicates fish was caught within one mile of point of release． ＊Indicates fish was caught in an area other than the upper Laguna Madre． Length and growth are shown in inches．

    S＝Sport fisherman
    C＝Commercial fisherman
    $\mathrm{N}=$ Recaptured in adult fish sampling

