Project No.	MF-R-5 Date Se	Date September 3, 1964	
Project Name:	Analysis of Populations of Sports and Commercial Fin-Fish		
	and of Factors Which Affect These Pop	ions in	C
	Bays of Texas		
Period Covered	January_1, 1963 to December 31, 1963	Job No.	2

Population Studies of the Sports and Commercial Fin-Fish and Forage Species of the Galveston Bay System

Abstract: Seasonal occurrences, size ranges, and distribution of forage fish, juvenile game fish, and adult game fish in various habitats of Galveston Bay were studied.

Forage species were most abundant in spring and least abundant in winter. Most species occurred during summer and fall.

Juvenile spotted sea trout, Cynoscion nebulosus, black drum, Pogonias cromis, and redfish, Sciaenops ocellata, were more abundant at nursery areas sampled in 1963 than in 1962.

Atlantic croaker, Micropogon undulatus, and sheepshead, Archosargus probatocephalus, were the most abundant adult game fish collected.

Game fish tags were returned at a slower rate in 1963 than in the previous year.

Procedures: Forage samples were collected monthly with: (1) a 10-foot otter trawl of $1 \frac{1}{4}$-inch stretched mesh and a cod end of one-half of an inch stretched mesh (2) a 60 -foot nylon bag seine, 6 feet deep of three-fourth of an inch stretched mesh. The trawl was pulled by boat for 15 -minute durations and covered approximately one acre. Seine hauls were made in shallow water and the total area of bay bottom covered was calculated. Small samples of each species were measured for rough average size determinations. Standard length in millimeters, weights by species, and total sample weight were recorded.

Juvenile fish populations were sampled monthly at four regular stations with a 60-foot nylon seine, 6 feet deep of three-fourth of an inch stretched mesh. Sampling procedure followed that described for forage species.

Four adult game stations were sampled monthly with a 1,200-foot drag seine, 4 feet deep and $2 \frac{1}{2}$-inch stretched mesh. The bag section was of 2 -inch stretched mesh and was 6 feet deep. The net was pulled by hand and the total area sampled calculated. Lengths and weights of all game fish caught were recorded.

Special collections were made with trammel nets, gill nets and hook and 1ine.

Tags were applied to game fish that appeared to be in good condition after capture.

Hydrographic and meteorological data were obtained at each station. Temperatures were read in degrees centigrade and salinities were determined by the Mohr Titration Method.

References used to identify species were Breder (1948), Hildebrand and Cable (1934), Welsh and Breder (1923), and Hoese (1958).

Eindings and
Discussion: Forage Species
Forage data collected during this survey are presented in Table 1. A total of 319,804 specimens were captured and examined. This included 55,614 caught with a 60 -foot seine and 264,190 caught by a 10 -foot trawl. Sampling distribution, temperatures, and salinities by seasons are presented in Table 2. The largest sample sizes were collected during spring and summer months; lowest during fall and winter.

Fifty species* of forage fish and three invertebrate types were taken. The bay anchovy, Anchoa mitchilii, was the most abundant species caught in trawls (Figure 2), but composed only 20 per cent of the total forage weight (Figure 3).

Seine samples were numerically dominated by commercial shrimp, Penaeus sp., and striped mullet, Mugil cephalus, (Figure 2). Mullet composed 39 per cent of the total weight as compared to 3 per cent for shrimp (Figure 3).

The large numbers of juvenile croakers ($20-40 \mathrm{~mm}$) in December, February, and March trawl catches tend to distort winter and early spring data making numbers present high and weights $10 w$.

Cynoscion arenarius - The value of the sand sea trout as a forage item is not understood. It was the fourth most abundant species collected by trawling. Juveniles ($20-45 \mathrm{~mm}$) were present during every month except December. This indicates a long spawning season. Renfro (1959) found spring and summer to be peak spawning months.

Brevoortia patronus - The largescale menhaden, like the mullet, is less vulnerable to small trawls. Sixty-three per cent of the total sample was caught in one sample in August. Renfro (1959) states that Galveston Bay serves as a nursery area for thousands of small menhaden which mass in large schools during summer months. The fish swim near the surface and are hard to catch in trawl samples but are often found in the stomachs of the more important game fish.

Leiostomus xanthurus - The spot ranked 8th in traw1 catches and 7th in seine hauls (Figure 2). The young-of-the-year first appeared in late December.

Stellifer 1 anceolatus - Star drum were present during summer and fall. They appear to have left the bay during winter and spring months. Renfro (1959) found post-larvae entering the bay in June.

Eundulus similis, F. grandis, and Cyprinodon variegatus are the more important cyprinodonts in this area. They predominated winter seine samples, but did not appear in trawl samples.

Lagodon rhomboides - Pinfish were abundant at times at the shallow grassy seine stations in West Bay. Several juveniles (35 mm) appeared in the April trawl samples. The species was more abundant in salinities over 25 ppt.

Spheroides nephelus - The southern puffer was fairly abundant in the summer and fall, especially on shallow muddy bottoms. Its importance as a food item is questionable. It apparently spawns in the spring.

During the summer, 1 trawl and 3 seine stations were added in locations previously not sampled (Figure 1). Catches at these stations did not appear* to differ significantly from other catches; therefore, it might be assumed that samples at regular stations gave a fairly good picture of the quality and quantity of species present in the bay。*

Species collected by gear other than trawl and seine or during supplemental sampling were also recorded. These are presented separately in Table 3.

Bad weather and personnel shortage cut the winter sampling short; therefore, attempts to stratify sampling by time within a season or between seasons were unsuccessful.

Juvenile Game Fish

Relative year-class strength of several juvenile game species, based on a method proposed by Marr (1952), is estimated in Table 4. Monthly deviations of the 1963 calculations for number of juvenile game fish per acre from the 1962 findings are shown. The catch per acre calculations were projected from areas covered by the routine 60 -foot bag seine hauls.

Survival of 1963 year-class black drum, redfish, and spotted sea trout appears to be higher this year than in 1962. Sheepshead and flounder data were too weak to allow comment; however, the lack of these species in the samples would suggest a poor year class.

[^0]West Bay（Mud Cut）was the only station to produce all five major game fish． Surf Oaks was an important nursery area for spotted sea trout，redfish，and black drum．

Bolivar and Lone Oak did not appear to be important nursery areas during this survey．

There was no apparent correlation between salinity and juvenile game fish distribution．

Table 6 shows monthly size ranges of juvenile game fish collected during 1962 and 1963．

Although the spawning season of redfish is lengthy，September，October，and November appear to be peak months（Tab1e 6）．Zero year－class spotted sea trout （ $20-40 \mathrm{~mm}$ ）appeared first in July catches（1962 and 1963），but spawning activity probably continued through September（Tab1e 6）since trout as small as 31 mm were collected in October．

Spotted Sea trout－Forty－eight juvenile trout were collected this year． The size range was 28 mm to 138 mm 。 Salinities at stations producing trout varied between 13 and 37 ppt．The first 1963 year－class spotted sea trout were taken in July at Mud Cut．The largest single collection（15）was taken at Surf Oaks in November（size range $57-106 \mathrm{~mm}$ ）。 Small juveniles（ $20-40 \mathrm{~mm}$ ）were found in all months from July through October．A small peak of abundance occurred in July，followed by a larger one in November．

Redfish－The first 1963 year－class redfish appeared in November at Surf Oaks．Low tides in December hampered adequate sampling；however， 5 specimens between 21－59 mm were taken at Mud Cut and Moses Lake（Figure 1）．Salinities in nursery areas varied between 21.7 and 31.9 ppt．Small redfish（ $58-90 \mathrm{~mm}$ ） taken in February，March，and April were assumed to be of the 1962 spawn（Table 6）．

Southern Flounder－Stevens（1962）found large concentrations of flounder in Mud and Tay1or Lakes（Figure 1）in February，March，and April of 1962 （Table 6）．Few juvenile flounder were taken during this survey．

Sheepshead－West Bay serves as a nursery area for sheepshead and even though only three specimens were recorded during this survey，small sheepshead were observed in the Ruppia（widgeon grass）beds on several occasions．

Black Drum－Surf Oaks served as an important nursery area for black drum in 1963．Figure 4 shows a growth curve of young drum taken on various dates between May 28 and November 21，1963．Size ranges and mean sizes are also given．Salinities are recorded in Table 5．During the 175 days the drum remained at Surf Oaks，they grew at the rate of about $0.5 \mathrm{~mm} / \mathrm{day}$ 。＊By fitting a regression line to month1y mean sizes of drum（Figure 5），a growth rate of $0.6 \mathrm{~mm} / \mathrm{day}$ was estimated．These drum probably resulted from a winter spawn and show a slower growth rate than that found by Frisbie（1961）in Delaware Bay． The spawning period would probably be January through March，which agrees with findings of Pearson（1929）and Simmons and Breuer（1962）．

Game Fish

Findings

and Discussion：Croaker and sheepshead were the dominant game fish in drag seine samples．Table 7 shows monthly catches of game fish at the four regular stations sampled（Figure 1）．Salinities and temperatures taken during sampling are also shown in Table 7．

[^1]Mud Cut was the only station to consistently produce game fish．Stevens （1961）described the area and states that stable hydrology，vegetation，and an adjacent pass to the Gulf makes this a suitable fish habitat．

The croaker has become an increasingly important game fish in this area． This species is sought by large numbers of sportsmen during summer and fall months and the croaker＂runs＂at Rollover Pass are becoming as popular as the large redfish＂runs＂in the Gulf surf during the fall．

An unusually large redfish＂run＂occurred in the Gulf surf at Galveston during September，October，and November 1963，after hurricane＂Cindy＂。 Local anglers said this was the largest run since 1900.

Although samples indicate black drum and sheepshead are relatively abundant in this area，little sport or commercial pressure is exerted on these species。＊

Commercial Landings
Figure 7 shows the commercial landings for Galveston Bay during 1963. Spotted sea trout composed 67 per cent of the total catch；while redfish landings represent only 2 per cent of the total．

An index of commercial catches by months is presented in Figure 6． Peak months were November and March．Summer catch data reflects a change in fishing activity due，mainly，to trash fish and crabs that damage nets during the warm months．

Fish Tagging

Tagging data and returns are presented in Tables 8 and 9。 Only 13 tags were returned from the 1963 tagging program（Table 8）．Thirteen tags were returned from previous taggings（1961－1962）．Redfish showed the highest rate of returns（4．3 per cent）（Tab1e 9）．

Tag returns from all species suggest little movement between bays．To date， 44 redfish tags out of 262 tagged since September 1961，have been returned．Thirty－six of these recoveries were from redfish released in West Bay or Chocolate Bay（Figure 1）．None of the fish were recovered outside of these areas．This tends to suggest heavy exploitation of the species in this area，with little movement between bays involved．

Comments：The value of the sand sea trout and croaker as game fish has been underestimated．A future study of the status of the fishery and biology of these species would be justified．

Prepared by：	Bill More
	Marine Biologist

Joseph P．Breuer
Project Leader

James R．Stevens
Regional Supervisor

Approved by：$\frac{\text { Lernance }}{\text { coordinator }}$

[^2]
References

Breder, Charles N. Jr. 1929. Field Book of Marine Fishes of the Atlantic Coast. G. P. Putnam's Sons, New York.

Erisbie, Charles M. 1961. Young black drum, Pogonias cromis, in tidal fresh and brackish waters, especially in the Chesapeake and Delaware Bay areas. Chesapeake Science $\underline{2}$ (1-2).

Hildebrand, Samuel F. and Luella E. Cable. 1934. Reproduction and development of whitings and kingfishes, drums, spot, croaker, and weakfishes or sea trouts, family Sciaenidae, of the Atlantic Coast of the United States. Bull. U. S. Bur, Fish., Vol. 48, No. 16.

Hoese, Hinton D. 1958. Keys of the Flatfishes and Elasmobranchs of the Texas Coast. Texas Game and Fish Commission, Marine Div. (Mem.).

Marr, John C. 1952. Marine Fisheries Biology. Food and Agriculture Organization of the United Nations Publ. Santiago, Chile.

Pearson, James C. 1929. Natural history and conservation of redfish and other sciaenids of the Texas Coast. Bul. U. S. Bur. Fish. 44.

Renfro, William C. 1959. Checklist of the Fishes and Commercial Shrimp of Area M-2. Project Reports 1958-1959, Marine Div., Texas Game and Fish Commission.

Simmons, E. G. and J. P. Breuer. 1962. A study of the redfish, Sciaenops ocellata Linnaeus and black drum, Pogonias cromis Linnaeus. Pub1. Inst. Mar. Sci。 (Univ. of Texas) 8.

Stevens, James R. 1961. Population studies of the sports and commercial fin-fish and forage species of the Galveston Bay System. Project Report Marine Fisheries Div., Texas Game and Fish Commission.

Table 1
Seasonality of Forage Species in Galveston Bay (1963)

Table 1--Continued

Table 1--Continued

			Dec.-Feb。		Mar.-May		June-Aug.		Sept.-Nov.	
			Traw1	Seine	Traw1	Seine	Trawl	Seine	Traw1	Seine
	36.	Fundulus similis		19		328		64		
	37.	Cyprinodon variegatus		58		269		16		
	38.	Menidia beryllina				1		4		4
	39.	Trachinotus carolinus								1
	40.	Oligoplites saurus								5
	41.	Eucinostomus sp.						21		4
	42.	Gobiosoma boscí						1		1
1	43.	Lucania parva				6				
	44.	Hypsoblennius lonthas						1		
	45.	Orthopristis chrysopterus		3				106		8
	46.	Seriola sp.					1			
	47.	Opsanus beta					1			
	48.	Ancylopsetta quadrocellata							1	
	49.	Squid (Lolliguncula brevis)) 1		40		22		38	1
	50.	Shrimp	482	14	867	54	1443	481	1164	736
N	51.	Crabs (Callinectes sp.)	25	15	21	45	22	116	85	83

Table 2
Sample Distribution, Temperature, and Salinity Range by Seasons (1963)

	Winter		Spring		Summer
				Fall	
Salinity Range (ppt)	$2.1-31.9$		$11.0-32.3$	$5.2-37.9$	$15.9-33.6$
Temperature Range $\left({ }^{\circ} \mathrm{C}\right)$	$8.4-17.7$		$15.3-30.8$	$27.4-35.0$	$17.0-34.5$

No. of Samples:

Seine $\left(60^{\prime}\right)$	5	8	14	13
Trawl $\left(10^{\prime}\right)$	10	26	26	22

Table 3
Species of Special Note (1963)

Table 4
Juvenile Game Fish Collections (1962 \& 1963)
Calculated Number of Indidivuals Per Acre*

\section*{| N |
| ---: |
| N |
| NO |
| |}

	Speckled Trout			Redfish			Drum			Sheepshead			Flounder		
	1962	1963	Mon. Dev.	1962	1963	Mon. Dev.	1962	1963	Mon. Dev。	1962	1963	Mon. Dev.	1962	1963	Mon Dev.
February															
Mud Cut	0	0	0	1.8	0	-1.8	0	0	0	1.7	0	-1.7	0	0	0
Surf Oaks	0	0	0	18.2	5.8	-12.4	0	0	0	0	0	0	0	0	0
Lone Oak	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolivar Penn.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

March															
Mud Cut	0	0	0	7.1	0	-7.1	0	0	0	7.1	0	-7.1	0	0	0
Surf Oaks	14.3	0	-14.3	14.3	10.8	-3.5	0	0	0	0	0	0	57.1	0	-57.1
Lone Oak	0	0	0	0	0	0	0	10.8	+10.8	0	0	0	0	0	0
Bolivar Penn.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

April														
Mud Cut	NS	0	-	NS	0	-	NS	8.1	-	NS	0	-	NS	8.1
, Surf Oaks	NS	0	-	NS	64.8	-	NS	0	-	NS	0	-	NS	0
None Oak	0	0	0	0	0	0	0	0	0	0	0	0	0	0
'Bolivar Penn.	NS	0	-	NS	0									

May															
Mud Cut	0	NS	-	7.1	NS	-	7.1	NS	-	0	NS	-	7.1	NS	-
Surf Oaks	NS	0	-	NS	0	-	NS	5486.4	-	NS	0	-	NS	0	-
Lone Oak	0	0	0	7.1	0	-7.1	7.1	0	7.1	7.1	0	-7.1	0	0	0
Bolivar Penn.	NS	0	-												

June															
Mud Cut	0	0	0	5.6	0	-5.6	38.9	11.6	-27.3	0	11.6	11.6	0	11.6	11.6
Surf Oaks	NS	0	-	NS	0	-	NS	1965.6	-	NS	0	-	NS	0	-
Lone Oak	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolivar Penn.	NS	0	-	NS	0	-	NS	8	-	NS	0	-	NS	0	-

Table 4--Continued

	Speckled Trout			Redfish			Drum			Sheepshead			Flounder		
	1962	1963	Mon. Dev.	1962	1963	Mon. Dev.	1962	1963	Mon. Dev.	1962	1963	Mon. Dev.	1962	1963	Mon. Dev.
July															
Mud Cut	22.2	109.0	86.8	0	0	0	61.1	54.6	-6.5	5.6	9.1	3.5	0	0	0
Surf Oaks	0	0	0	0	0	0	11.1	583.2	572.1	0	0	0	0	0	0
Lone Oak	0	0	0	0	0	0	0	0	0	0	0	0	5.6	0	-5.6
Bolivar Penn.	0	0	0	0	0	0	22.2	0	-22. 2	0	0	0	0	0	0
August															
Mud Cut	21.4	46.0	24.6	0	0	0	14.3	0	-14.3	14.3	. 0	-14.3	0	0	- 0
Surf Oaks	0	0	0	0	0	0	33.3	295.7	262.4	0	0	0	0	0	0
Lone Oak	NS	6.4	-	NS	0	-									
Bolivar Penn.	100.0	0	-100.0	0	0	0	0	0	0	0	0	0	100.0	0	-100.0
September															
, Mud Cut	7.7	0	-7.7	0	0	0	53.8	33.9	-19.9	7.7	0	-7.7	7.7	0	-7.7
ω Surf Oaks	0	6.5	6.5	0	0	0	16.7	32.5	15.8	0	0	0	0	0	0
Lone Oak	NS	29.0	-	NS	0	0									
Bolivar Penn.	NS	0	-												
October															
Mud Cut	77.8	36.4	-41.4	0	0	0	44.4	0	-44.4	0	0	0	0	0	0
Surf Oaks	NS	174.0	-	NS	0	-	NS	87	-	NS	0	-	NS	0	-
Lone Oak	11.1	11.3	+. 2	0	0	0	0	0	-	0	0	0	0	0	0
Bolivar Penn.	0	0	0	0	0	0	0	0	-	0	0	0	5.6	0	-5.6
November															
Mud Cut	NS	NS	-												
Surf Oaks	0	805.5	805.5	0	170.1	170.1	0	113.4	113.4	0	0	0	0	0	0
Lone Oak	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolivar Penn.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tab1e 4--Continued

Table 5
Temperature and Salinity Ranges at Juvenile Stations (1963)

Table 6

```
Monthly Size Distribution of Juvenile Game Fish (1962-1963) Redfish
(96\%)
\(\frac{\text { Feb. }}{62 \quad 63} \quad \frac{\text { Mar. }}{62}\)
\(\frac{\text { Apr。 }}{62} \quad \frac{\text { May }}{63} \quad \frac{1}{63}\)
```



```
\(\frac{\text { Sept. }}{62 \quad 63} \quad \frac{\text { Oct. }}{62}\)
\(\frac{\text { Nov. }}{\left.62 \quad \begin{array}{ll}63 & \mathrm{Dec}_{0} \\ \underline{62} \quad 63\end{array}\right)}\)
                                    1
    \(31-40 \mathrm{~mm}\)
    \(41-50 \mathrm{~mm} \quad 2\)
1
4
    \(51-60 \mathrm{~mm} \quad 1 \quad 1\)
2
    \(\begin{array}{cllll}61-70 \mathrm{~mm} & 1 & 1 & 2 & 1\end{array}\)
    \(71-80 \mathrm{~mm} \quad 1 \quad 3 \quad 2\)
    \(81-90 \mathrm{~mm} \quad 4 \quad 3\)
```



```
\(7 \quad 1\)
    4
    \(110-120 \mathrm{~mm}\)
    \(121-130 \mathrm{~mm}\)
    \(131-140 \mathrm{~mm}\)
    \(141-150 \mathrm{~mm}\)
    \(151-160 \mathrm{~mm} \quad 1\)
```



```
                    Tab1e 6--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Feb.} & \multicolumn{2}{|r|}{Mar.} & \multicolumn{2}{|l|}{Apr.} & \multicolumn{2}{|l|}{May} & \multicolumn{4}{|l|}{Spotted Sea Trout
\(\qquad\)
June July} & \multicolumn{2}{|l|}{Aug.} & \multicolumn{2}{|l|}{Sept.} & \multicolumn{2}{|l|}{Oct.} & \multicolumn{2}{|l|}{Nov.} & \multicolumn{2}{|l|}{Dec.} \\
\hline Size & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 \\
\hline \(21-30 \mathrm{~mm}\) & & & & & & & & & & & & & & 1 & & & & & & & & \\
\hline \(31-40 \mathrm{~mm}\) & & & & & & & & & & & 2 & & 2 & 1 & & & & 1 & & & & \\
\hline \(41-50 \mathrm{~mm}\) & & & & & & & & & & & 1 & 2 & & 1 & & & & 1 & & & & \\
\hline \(51-60 \mathrm{~mm}\) & & & & & & & & & & & & 3 & & & & & & & & 1 & & \\
\hline \(61-70 \mathrm{~mm}\) & & & & & & & & & & & & 2 & & 1 & & & & 2 & & & & \\
\hline \(71-80 \mathrm{~mm}\) & & & & & & & & & & & & 4 & 1 & & & 1 & & 2 & & 4 & & \\
\hline \({ }^{1} \quad 81-90 \mathrm{~mm}\) & & & & & & & & & & & & 1 & & 2 & & & 2 & & & 6 & & \\
\hline \(191-100 \mathrm{~mm}\) & 1 & & & & & & & & & & & & & 1 & & 1 & & 3 & & 3 & & \\
\hline \(101-110 \mathrm{~mm}\) & & & & & & & & & & & & & & & & & 1 & & & 1 & & \\
\hline 111-120 mm & & & & & & & & & & & & & & & & & & 1 & & & & \\
\hline \(121-130 \mathrm{~mm}\) & 1 & & 1 & & & & & & & & & & & & & & 1 & & & & & \\
\hline \(131-140 \mathrm{~mm}\) & & & 1 & & & & & & & & & & & & & & & 2 & & & & \\
\hline 141-150 mm & & & & & & & & & & & & & & & & & 3 & & & & & \\
\hline \(151-175 \mathrm{~mm}\) & & & & & & & & & & & & & & & 1 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{llllllllllllllllllllllllllllll} 
Total & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 12 & 3 & 7 & 1 & 2 & 7 & 12 & 0 & 15 & 0 & 0
\end{tabular}

Table 6--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \widehat{N} \\
& 0 \\
& \infty
\end{aligned}
\] & \multicolumn{2}{|l|}{Feb.} & \multicolumn{2}{|l|}{Mar.} & \multicolumn{2}{|l|}{Apr.} & \multicolumn{2}{|l|}{May} & \multicolumn{4}{|l|}{Drum} & \multicolumn{2}{|l|}{Aug.} & \multicolumn{2}{|l|}{Sept.} & \multicolumn{2}{|l|}{Oct.} & \multicolumn{2}{|l|}{Nov.} & \multicolumn{2}{|l|}{Dec.} \\
\hline Size & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 \\
\hline \(21-30 \mathrm{~mm}\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(31-40 \mathrm{~mm}\) & & & & & & & & 47 & & 1 & & & & & & & & & & & & \\
\hline \(41-50 \mathrm{~mm}\) & & & & & & & & 343 & & 31 & & 5 & & & & & & & & & & \\
\hline \(51-60 \mathrm{~mm}\) & & & & & & & & 106 & 1 & 113 & & 23 & & 2 & & & & & & & & \\
\hline \(61-70 \mathrm{~mm}\) & & & & & & & & 11 & & 28 & & 18 & & 10 & & & & & & & & \\
\hline \(71-80 \mathrm{~mm}\) & & & & & & & & & 3 & & 7 & 8 & & 17 & & & & & & & & \\
\hline \(81-90 \mathrm{~mm}\) & & & & & & & & & & & 5 & 4 & 1 & 1 & & & & & & & & \\
\hline \(\stackrel{\perp}{\stackrel{-}{-}} 91-100 \mathrm{~mm}\) & & & & & & & & & & 1 & & 1 & & 3 & & 4 & & & & & & \\
\hline \(101-110 \mathrm{~mm}\) & & & & & & & & & & & 1 & & 2 & 2 & 1 & 3 & & & & & & \\
\hline \(111-120 \mathrm{~mm}\) & & & & & & & & & & & & & 1 & 12 & 1 & 2 & & 1 & & 2 & & \\
\hline \(121-130 \mathrm{~mm}\) & & & & & & & & & & & 1 & & & 2 & 3 & & & 4 & & 1 & & \\
\hline \(131-140 \mathrm{~mm}\) & & & & & & & & & & & & & & & 1 & & 1 & & & 1 & & \\
\hline \(141-150 \mathrm{~mm}\) & & & & & & & & & 2 & & & & & & & 1 & 3 & & & & & \\
\hline \(151-160 \mathrm{~mm}\) & & & & & & & & & & & & & & & 2 & & & & & & & \\
\hline \(161-170 \mathrm{~mm}\) & & & & 1 & & & & & & & & & & & & & & & & & & \\
\hline \(171-180 \mathrm{~mm}\) & & & & & & 1 & 1 & & & & & & & & & & & & & & & \\
\hline \(181-200 \mathrm{~mm}\) & & & & & & & 1 & & 1 & & & & & & & & & & & & & \\
\hline \(201-220 \mathrm{~mm}\) & & & & & & & & & & 1 & & & & & & & & & & & & \\
\hline Total & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 507 & 7 & 175 & 14 & 59 & 4 & 49 & 8 & 10 & 4 & 5 & 0 & 4 & 0 & 0 \\
\hline
\end{tabular}

Table 6--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size} & \multicolumn{2}{|l|}{Feb.} & \multicolumn{2}{|l|}{Mar.} & \multicolumn{2}{|l|}{Apr.} & \multicolumn{2}{|l|}{May} & \multicolumn{4}{|c|}{Sheepshead} & \multicolumn{2}{|l|}{Aug.} & \multicolumn{2}{|l|}{Sept.} & \multicolumn{2}{|l|}{Oct.} & \multicolumn{2}{|l|}{Nov.} & \multicolumn{2}{|l|}{Dec.} \\
\hline & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 & 62 & 63 \\
\hline \(21-30 \mathrm{~mm}\) & & & & & & & & & & 2 & 1 & & & & & & & & & & & \\
\hline \(31-40 \mathrm{~mm}\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(41-50 \mathrm{~mm}\) & & & & & & & & & & & & & 1 & & & & & & & & & \\
\hline \(51-60 \mathrm{~mm}\) & 1 & & & & & & & & & & & & & & & & & & & & & \\
\hline \(61-70 \mathrm{~mm}\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(71-80 \mathrm{~mm}\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline 81-90 mm & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(91-100 \mathrm{~mm}\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(101-150 \mathrm{~mm}\) & & & & & & & 1 & & & & & 1 & 1 & & & & & & & & & \\
\hline Total & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
```

O
Table 6--Continued

Size	Feb.		Mar.		Apr.		May		F1ounder				Aug.		Sept.		Oct.		Nov.		Dec.			
			June	July																				
	62	63			62	63	62	63	62	63	62	63	62	63	62	63	62	63	62	63	62	63	62	63
$11-20 \mathrm{~mm}$	141		5																					
$21-30 \mathrm{~mm}$	19		89		5																			
$31-40 \mathrm{~mm}$	1		54		35																			
$41-50 \mathrm{~mm}$			11		45																			
$51-60 \mathrm{~mm}$					12																			
$61-70 \mathrm{~mm}$					2		1																	
$71-80 \mathrm{~mm}$																								
$81-90 \mathrm{~mm}$					1						1													
91-100 mm																								
$101-150 \mathrm{~mm}$										2			1											
Totals	161	0	159	0	100	0	1	0	0	2	1	0	1	0	0	0	0	0	0	0	0	0		
Not Measur			285																					

```

Table 7 - Summary of Game Fish Caught at Drag Seine Stations (1963) (expressed as no/acre)

HUMBLE CAMP


Table 7 （Cont．）－Summary of Game Fish Caught at Drag Seine Stations（1963）（expressed as no／acre）

LONE OAK BAYOU
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPECIES & JAN。 & FEB． & MAR． & APR。 & MAY & JUNE & JULY & AUG。 & SEPT． & OCT。 & NOV． & DEC． \\
\hline Spt．Sea Trout & & 0.24 & & & & 2.20 & & & & & 0.85 & \\
\hline Redfish & & & 0.24 & & & 0.49 & 0.49 & 0.57 & 0.59 & 0.25 & 0.43 & \\
\hline Black Drum & & 1.46 & 2.44 & 0.17 & 0.49 & 13.41 & 0.24 & 0.86 & 8.24 & 1.52 & & \\
\hline Flounder & － & & & & 0.49 & 0.49 & 0.49 & 2.86 & & & & \\
\hline Sheepshead & 몰 & & 0.73 & 0.68 & 6.10 & 5.37 & 13.90 & 2.29 & 11.80 & 1.65 & 8.30 & 式 \\
\hline Sand Trout & \(\sum\) & & & & & & & & 0.29 & 0.25 & & － \\
\hline Croaker & ふ & & 10.49 & 0.51 & & 7.07 & 6.82 & 13.43 & 16.43 & 0.13 & & 宸 \\
\hline Acres Sampled & F & 4.10 & 4.10 & 5.90 & 4.10 & 4.10 & 4.10 & 3.50 & 3.40 & 7.90 & 4.70 & \\
\hline W．Temp．（ \({ }^{\circ} \mathrm{C}\) ） & 2 & 12.40 & 22.80 & 26.00 & 28.80 & 32.00 & & 34.20 & 25.50 & 26.00 & 22.40 & O \\
\hline Salinity（ppt） & & 27.30 & 10.40 & 11.90 & 12.20 & 12.10 & 17.00 & 12.50 & 19.50 & 18.60 & 23.60 & \\
\hline
\end{tabular}
\(\stackrel{\substack{N \\ N \\ 1}}{ }\)
MUD CUT（WEST BAY）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPECIES & JAN。 & FEB． & MAR． & APR． & MAY & JUNE & JULY & AUG． & SEPT． & OCT． & NOV． & DEC． \\
\hline Spt．Sea Trout & & & 1.02 & 1.53 & & 0.49 & 0.98 & 0.26 & 0.81 & 1.08 & & \\
\hline Redfish & 0.73 & 0.51 & 0.85 & 0.68 & & & 0.24 & 5.00 & 0.24 & 0.27 & & 2.20 \\
\hline Black Drum & 0.24 & & 0.34 & 1.02 & & & & 1.05 & 0.24 & 0.82 & & 0.74 \\
\hline Flounder & & & 0.68 & 0.17 & 㫛 & & & 0.26 & & & & \\
\hline Sheepshead & 0.49 & 0.34 & 0.51 & 23.73 & ＋ & 0.49 & 0.24 & 5.53 & 0.24 & 14.32 & 氙 & 6.58 \\
\hline Sand Trout & & & & & 定 & & & & 0.35 & & 官 & \\
\hline Croaker & & & & & ¢ & & 1.95 & 1.58 & 1.28 & 1.35 & ¢ & \\
\hline Acres／sampled & 4.10 & 5.90 & 5.90 & 5.90 & F－1 & 4.10 & 4.10 & 3.80 & 8.60 & 3.70 & & 4.10 \\
\hline W．Temp．（ \({ }^{\circ} \mathrm{C}\) ） & 13.80 & 12.80 & 17.00 & 28.30 & z & 31.40 & 32.00 & 33.50 & 26.00 & 25.20 & \％ & 17.70 \\
\hline Salinity（ppt） & 23.50 & 23.00 & 23.60 & 21.90 & & 34.30 & 33.50 & 37.90 & 28.90 & 32.50 & & 31.90 \\
\hline
\end{tabular}


Table 9
Tagging Data (1963)
\begin{tabular}{lccccc} 
Species & No. Tagged & No. Returned & \% Returned & & Max. No. Days Free \\
Spotted Sea Trout & 103 & & 2 & 1.9 & 51 \\
Croaker & 73 & 0 & 0.0 & - \\
Redfish & 47 & 2 & 4.3 & 123 \\
Sand Sea Trout & 48 & 0 & 0.0 & - \\
Black Drum & 241 & 4 & 1.6 & 211 \\
Sheepshead & 298 & 5 & 1.7 & 50 \\
Flounder & \(\underline{16}\) & 0 & 0.0 & - \\
& Total & 826 & & &
\end{tabular}

FIGURE 1. Fish Sampling Stations





FIGURE 5 - Growth rate of black drum, as calculated by the regression equation


Total

Jan.
Feb.
Mar.
Apr.
May June July
Aug.
Sept.
Oct.
Nov.
Dec.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1737 & 16296 & 96 & 5049 & 1653 & 24,831 \\
\hline 664 & 11808 & 50 & 1884 & 4190 & 18,596 \\
\hline 720 & 39636 & 41 & 6130 & 0 & 46,527 \\
\hline 387 & 8119 & 1108 & 524 & 3983 & 14,121 \\
\hline 200 & 14448 & 175 & 1132 & 1545 & 17,500 \\
\hline 0 & 0 & 1072 & 0 & 0 & 1,072 \\
\hline 0 & 0 & 1124 & 0 & 30 & 1,154 \\
\hline 20 & 16 & 2163 & 386 & 585 & 1,170 \\
\hline 101 & 2 & 6325 & 2516 & 2710 & 11,654 \\
\hline 250 & 18638 & 6676 & - 634 & 3190 & 29,388 \\
\hline 496 & 37879 & 8360 & 1348 & 2736 & 50,818 \\
\hline \multicolumn{5}{|c|}{Not Available} & \\
\hline
\end{tabular}

FIGURE 7 - Commercial landings (in pounds) - Galveston Bay (1963)
Source: Parks \& Wildlife Marine Products Report (Galveston - Sabine Area)```


[^0]:    No test was set up for other seasons; therefore, these limited data may apply only to summer.

[^1]:    ＊Growth rate based on mean size／time computations．

[^2]:    ＊See commercial landings（1963）for commercial catch；sports pressure taken from unpublished data of creel census now in progress．

